Spatiotemporal Analysis of Maize Water Requirement in the Heilongjiang Province of China during 1960–2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Effective Precipitation
2.3. Maize Water Requirement
2.4. Crop Water Surplus Deficit Index
2.5. Coupling Degree of ETc and Pe
2.6. Climate Tendency Rate
2.7. Trend Test
2.8. Data Processing
3. Results
3.1. Spatial and Temporal Variation of ET0
3.2. Spatial and Temporal Variation of Maize ETc
3.3. Spatial and Temporal Variation of Pe
3.4. Spatial and Temporal Variation of CDSWI
3.5. Spatial and Temporal Variation of Coupling Degree of ETc and Pe
3.6. Climate Change Impact on Water Requirement Relationship
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Denman, K.; Brasseur, G. The physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Discret. Comput. Geom. 2007, 18, 95–123. [Google Scholar]
- Goyal, R.K. Sensitivity of evapotranspiration to global warming: A case study of arid zone of rajasthan (India). Agric. Water Manag. 2004, 69, 1–11. [Google Scholar] [CrossRef]
- Doucett, R.R.; Marks, J.C.; Blinn, D.W.; Caron, M.; Hungate, B.A. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar]
- Hao, Z.; Jian, S.; Junnan, X. Spatial-temporal patterns and controls of evapotranspiration across the tibetan plateau (2000–2012). Adv. Meteorol. 2017, 7082606. [Google Scholar] [CrossRef] [Green Version]
- Tubiello, F.N.; Fischer, G. Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1030–1056. [Google Scholar] [CrossRef]
- Chen, Y.; Xue, Y.; Hu, Y. How multiple factors control evapotranspiration in North America evergreen needleleaf forests. Sci. Total Environ. 2018, 622–623, 1217–1224. [Google Scholar] [CrossRef]
- Ti, J.; Yang, Y.; Yin, X.; Liang, J.; Pu, L.; Jiang, Y.; Wen, X.; Chen, F. Spatio-temporal analysis of meteorological elements in the north china district of china during 1960–2015. Water 2008, 10, 789. [Google Scholar]
- Frere, M.; Popov, G.F. Agrometeorological Crop Monitoring and Forecasting; FAO: Rome, Italy, 1979. [Google Scholar]
- Tester, M.; Langridge, P. Breeding Technologies to Increase Crop Production in a Changing World. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Wu, X.; Wang, P.; Huo, Z.; Wu, D.; Yang, J. Crop Drought Identification Index for winter wheat based on evapotranspiration in the Huang-Huai-Hai Plain. Agric. Ecosyst. Environ. 2018, 263, 18–30. [Google Scholar] [CrossRef]
- FAO. OECD-FAO Agricultural Outlook; OECD Publishing, Food and Agriculture Organization of the United Nations: Rome, Italy, 2009; pp. 2011–2020. [Google Scholar]
- China Grain Production. Available online: http://www.stats.gov.cn/tjsj/ (accessed on 2 September 2020).
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Chhetri, N.B. A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Gabaldón-Leal, C.; Webber, H.; Otegui, M.E.; Slafer, G.A.; Ordóñez, R.A.; Gaiser, T.; Lorite, I.J.; Ruiz-Ramos, M.; Ewert, F. Modelling the impact of heat stress on maize yield formation. Field Crop. Res. 2016, 198, 226–237. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Hubbard, K.G.; Lin, X. Maize potential yields and yield gaps in the changing climate of northeast china. Glob. Chang. Biol. 2012, 18, 3441–3454. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Liu, Z.; Pullens, J.W.M.; Sun, S. Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions, China. Agric. Water Manag. 2020, 232, 106018. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.D.; Romero, C.C.; Migliaccio, K.W.; Morgan, K.T. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method); Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2010; pp. 1–10. [Google Scholar]
- Peel, M.C.; Mcmahon, T.A. Estimating evaporation based on standard meteorological data—Progress since 2007. Prog. Phys. Geogr. 2014, 38, 241–250. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Y.; Li, Z.; Fang, G.; Li, Y.; Xia, Z. Assessment of the Irrigation Water Requirement and Water Supply Risk in the Tarim River Basin, Northwest China. Sustainability 2019, 11, 4941. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Yang, P.; Hu, H.; Dai, C. Partitioning of Cotton Field Evapotranspiration under Mulched Drip Irrigation Based on a Dual Crop Coefficient Model. Water 2016, 8, 72. [Google Scholar]
- Thevs, N.; Peng, H.; Rozi, A.; Zerbe, S.; Abdusalih, N. Water allocation and water consumption of irrigated agriculture and natural vegetation in the aksu-tarim river basin, xinjiang, china. J. Arid. Environ. 2015, 112, 87–97. [Google Scholar] [CrossRef]
- Uniyal, B.; Dietrich, J.; Vu, N.Q.; Jha, M.K.; Arumi, J.L. Simulation of regional irrigation requirement with SWAT in different agro-climatic zones driven by observed climate and two reanalysis datasets. Sci. Total Environ. 2018, 649, 846–865. [Google Scholar] [CrossRef]
- Piticar, A.; Mihaila, D.; Lazurca, L.G.; Bistricean, P.I.; Putuntica, A.; Briciu, A.E. Spatiotemporal distribution of reference evapotranspiration in the republic of moldova. Theor. Appl. Climatol. 2016, 124, 1133–1144. [Google Scholar] [CrossRef]
- Gong, L.; Xu, C.Y.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the penman–monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze river) basin. J. Contam. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- Espadafor, M.; Lorite, I.J.; Gavilán, P.; Berengena, J. An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in southern Spain. Agric. Water Manag. 2011, 98, 1045–1061. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Wang, C.; Guo, E. Characteristic Analysis of Droughts and Waterlogging Events for Maize Based on a New Comprehensive Index through Coupling of Multisource Data in Midwestern Jilin Province China. Remote Sens. 2020, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Chandhok, S.; Williams, J.L.; Schwartzman, D. Anatomical analysis of recurrent conduction after circumferential ablation. J. Interv. Card. Electrophysiol. 2010, 29, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Ianetz, A.; Stanhill, G. Evaporative climate changes at bet Dagan, Israel, 1964–1998. Agric. For. Meteorol. 2002, 111, 83–91. [Google Scholar] [CrossRef]
- Croitoru, A.E.; Piticar, A.; Dragota, C.S.; Burada, D.C. Recent changes in reference evapotranspiration in Romania. Glob. Planet. Chang. 2013, 111, 127–136. [Google Scholar] [CrossRef]
- Thomas, A. Spatial and temporal characteristics of potential evapotranspiration trends over china. Int. J. Climatol. 2000, 20, 381–396. [Google Scholar] [CrossRef]
- Xu, C.Y.; Gong, L.; Jiang, T.; Chen, D.; Singh, V.P. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze river) catchment. J. Contam. Hydrol. 2006, 327, 81–93. [Google Scholar] [CrossRef]
- Nie, T.; Zhang, Z.; Qi, Z.; Chen, P.; Sun, Z.; Liu, X. Characterizing Spatiotemporal Dynamics of CH4 Fluxes from Rice Paddies of Cold Region in Heilongjiang Province under Climate Change. Water 2019, 16, 692. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhang, J.; Guo, E.; Li, D.; Ha, S.; Alu, S. Spatiotemporal characteristics of drought and waterlogging during maize growing season in midwestern Jilin province for recent 55 years. J. Nat. Disasters 2018, 27, 186–197. (In Chinese) [Google Scholar]
- Zhang, J.; Huang, J.; Mu, Q. Assessing the remotely sensed Drought Severity Index for agricultural drought monitoring and impact analysis in North China. Ecol. Indic. 2016, 63, 296–309. [Google Scholar] [CrossRef]
- China Meteorological Data Sharing Service System. Available online: https://data.cma.cn/ (accessed on 2 September 2020).
- Accumulated Temperature Zone of Crop Varieties in Heilongjiang Province. Available online: http://www.hljagri.gov.cn/ (accessed on 2 September 2020).
- Area Layout Planning of High-Quality and High-yield Main Food Crops in Heilongjiang Province in 2015. Available online: http://dszz.hljagri.gov.cn/tjxxw/jrtj/tzgg/201501/ (accessed on 2 September 2020).
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: Manual and Guidelines; FAO of UN: Rome, Italy, 1991. [Google Scholar]
- Gao, X.; Wang, C.; Zhang, J. Crop water requirement and temporal-spatial variation of drought and flood disaster during growth stages for maize in Northeast during past 50 years. Trans. CSAE 2012, 28, 101–109. (In Chinese) [Google Scholar]
- Bouraima, A.-K.; Zhang, W.H.; Wei, C.F. Irrigation water requirements of rice using Cropwat model in Northern Benin. Int. J. Agric. Biol. 2015, 8, 58–64. [Google Scholar]
- Stanhill, G.; Cohen, S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z.X.; Liang, Q.P.; Nie, T.Z. Experimental study on water and fertilizer coupling effect of maize spray irrigation in semi-arid area of Heilongjiang Province. Water Sav. Irrig. 2016, 6, 15–18. (In Chinese) [Google Scholar]
- Li, H.; Wang, Z.B.; Li, W.R. Effects of different soil properties on maize growth and water consumption in Northeast Cold Region. Water Sav. Irrig. 2015, 2, 5–8. (In Chinese) [Google Scholar]
- Collaboration Group on Isoline Map of Water Demand of Main Crops in China. Study on Isoline Map of Water Demand of Main Crops in China; Agricultural Science and Technology Press: Beijing, China, 1993. [Google Scholar]
- Shuo, L.; Yang, X.; Zhao, J. Effects of climate change and variety alternative on potential yield of spring maize in Northeast China. Trans. CSAE 2013, 29, 179–190. (In Chinese) [Google Scholar]
- Yuan, B.; Guo, J.P.; Ye, M.Z. Variety distribution pattern and climatic potential productivity of spring maize in Northeast China under climate change. Chin. Sci. Bull. 2012, 57, 3497–3508. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
Month | Climate Tendency Change Rate | ||||
---|---|---|---|---|---|
Average Max Temperature (°C·(10a)−1) | Average Min Temperature (°C·(10a)−1) | Average Humidity (%·(10a)−1) | Average Wind Speed (m·s−1(10a)−1) | Average Sunshine Hours (h·(10a)−1) | |
May | 0.58 *** | 0.13 | 0.55 | −0.28 *** | −4.93 |
June | 0.63 *** | 0.30 ** | −0.37 | −0.16 *** | −4.92 |
July | 0.35 *** | 0.10 | −0.12 | −0.15 *** | −4.87 |
August | 0.29 *** | 0.20 | −0.37 | −0.13 *** | −0.54 |
September | 0.28 ** | 0.27 *** | −0.84 * | −0.18 *** | −0.25 |
Periods | ET0/mm | ETc/mm | Pe/mm | CWSDI | Coupling Degree of ETc and Pe |
---|---|---|---|---|---|
1960–1979 | 563.65 | 393.33 | 258.31 | −32.00% | 0.6723 |
1980–1999 | 545.42 | 376.09 | 279.65 | −24.00% | 0.7512 |
2000–2015 | 549.82 | 379.73 | 256.93 | −30.00% | 0.6943 |
Periods | ET0/mm·(10a)−1 | ETc/mm·(10a)−1 | Pe/mm·(10a)−1 | CWSDI/(10a)−1 | Coupling Degree of ETc and Pe/(10a)−1 |
---|---|---|---|---|---|
1960–1999 | −2.2430 | −1.8567 | 0.2972 | 0.1394 | 0.0086 |
1980–2015 | −4.1972 | −2.3724 | −5.4242 | −0.9620 | −0.0095 |
1960–2015 | −3.2891 | −2.5697 | −1.001 | 0.0888 | 0.0028 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Du, C.; Nie, T.; Sun, Z.; Zhu, S.; Feng, C.; Dai, C.; Chu, L.; Liu, Y.; Liang, Q. Spatiotemporal Analysis of Maize Water Requirement in the Heilongjiang Province of China during 1960–2015. Water 2020, 12, 2472. https://doi.org/10.3390/w12092472
Wang T, Du C, Nie T, Sun Z, Zhu S, Feng C, Dai C, Chu L, Liu Y, Liang Q. Spatiotemporal Analysis of Maize Water Requirement in the Heilongjiang Province of China during 1960–2015. Water. 2020; 12(9):2472. https://doi.org/10.3390/w12092472
Chicago/Turabian StyleWang, Tianyi, Chong Du, Tangzhe Nie, Zhongyi Sun, Shijiang Zhu, Chengxin Feng, Changlei Dai, Lili Chu, Yong Liu, and Qizong Liang. 2020. "Spatiotemporal Analysis of Maize Water Requirement in the Heilongjiang Province of China during 1960–2015" Water 12, no. 9: 2472. https://doi.org/10.3390/w12092472
APA StyleWang, T., Du, C., Nie, T., Sun, Z., Zhu, S., Feng, C., Dai, C., Chu, L., Liu, Y., & Liang, Q. (2020). Spatiotemporal Analysis of Maize Water Requirement in the Heilongjiang Province of China during 1960–2015. Water, 12(9), 2472. https://doi.org/10.3390/w12092472