Using Coffee Pulp as Bioadsorbent for the Removal of Manganese (Mn (II)) from Synthetic Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Treatment of Coffee Pulp (CP) and Collection Site
2.2. Bromatological Analysis, Lignocellulosic Content, and IR Spectrum Reading on CP
2.3. Quantification of Mn (II)
2.4. Determination of the Optimum pH of Adsorption of Mn (II) with CP
2.5. CP Adsorption Kinetics
2.6. CP Adsorption Isotherm
2.7. Determination of Point of Zero Charge (pHpzc) and Active Sites of the CP
3. Results and Discussion
3.1. Bromatological Analysis and Lignocellulosic Content
3.2. Infrared (IR) Spectrum of the CP
3.3. Optimum pH Determination
3.4. Adsorption Kinetics Determination
3.5. Adsorption Isotherm Determination
3.6. Determination of the Zero Charge Point (pHpzc) and Active Sites of CP Surface
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations (UN). Information Note: Water and Sustainable Development. 2015. Available online: https://www.un.org/spanish/waterforlifedecade/waterandsustainabledevelopment2015/pdf/03_sustainable_development_esp.pdf (accessed on 10 July 2019).
- Salcedo, M.; Delso, E.; Portillo, P.; Alonso, S.; Narvio, O. Presence of organic, inorganic and microbiological contaminants in urban WWTP effluents. Rev. Salud Ambient. 2015, 96, 1. Available online: https://zaguan.unizar.es/record/65278?ln=es (accessed on 10 July 2019).
- Water Resources Research and Development Center (CIDERH). Wastewater and its Treatment. 2015. Available online: http://www.ciderh.cl/wp-content/uploads/2015/04/FICHA3.pdf (accessed on 10 July 2019).
- Doménech, X.; Peral, J. Environmental Chemistry of Earth Systems; Reverté, S.A.D: Barcelona, Spain, 2008. [Google Scholar]
- Gil, H.; Cisneros, J.; Dante de Prada, J.; Plevich, J.; Sánchez, A. Tecnologías verdes para el aprovechamiento de aguas residuales urbanas: Análisis económico. Ambiente Água. Interd. J. App. Sci. 2013, 8, 118–128. [Google Scholar]
- World Health Organization (WHO). Adverse Health Effects of Heavy Metals in Children. 2011. Available online: https://www.who.int/ceh/capacity/heavy_metals.pdf (accessed on 10 July 2019).
- Jiménez, A. Physicochemical Properties of Manganese. 2003. Available online: http://www.adi.uam.es/docencia/elementos/spv21/sinmarcos/elementos/mn.html (accessed on 10 July 2019).
- Howe, P.D.; Malcolm, H.M.; Dobson, S. World Health Organization & International Programme on Chemical Safety. In Manganese and Its Compounds: Environmental Aspects; World Health Organization: Geneva, Italy, 2004; Available online: https://apps.who.int/iris/handle/10665/42992 (accessed on 10 July 2019).
- Barthelmy, D. Mineralogy Database. 2014. Available online: http://webmineral.com/ (accessed on 10 July 2019).
- Uxúa, M.; Barbabosa, A.; Valladares, B. Manganese and Health. 2016. Available online: https://www.gob.mx/cms/uploads/attachment/file/197297/26_1_Manganeso_y_salud_2016.pdf (accessed on 10 July 2019).
- Food and Agriculture Organization of the United Nations (FAO). Functions of the Elements in the Plant. 2004. Available online: http://www.fao.org/tempref/GI/Reserved/FTP_FaoRlc/old/prior/segalim/aup/pdf/6a.pdf (accessed on 10 July 2019).
- Agency for Toxic Substances and Disease Registry (ATSDR). Public Health’s asbtract: Manganese. 2000. Available online: https://www.atsdr.cdc.gov/es/phs/es_phs151.pdf (accessed on 10 July 2019).
- Ostiguy, C.; Asselin, P.; Malo, S.; Nadeau, D.; DeWals, P. Management of Occupational Manganism Consensus of an Experts’ Panel; Institut de Recherche Robert Sauvéen Santé et en Sécurité du Travail (IRSST): Montreal, QC, Canada, 2005; Available online: https://pdfs.semanticscholar.org/5ae4/68af7c40ad50323344f76da46fe74be471c4.pdf (accessed on 10 July 2019).
- Sadek, A.H.; Rauch, R.; Schulz, P.E. Parkinsonism due to Manganism in a Welder. Int. J. Toxicol. 2003, 22, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Monaghan, T.; Redmond, J. Manganese toxicity with ephedrone abuse manifesting as parkinsonism: A case report. J. Med. Case Rep. 2012, 6, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoeven, W.M.; Egger, J.I.; Kuijpers, H.J. Manganese and acute paranoid psychosis: A case report. J. Med. Case Rep. 2011, 5, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senate of the Republic of Colombia. Decret 2566 de 2009 of the Ministry of Social Protection. 2009. Available online: http://www.secretariasenado.gov.co/senado/basedoc/decreto/2009/decreto_2566_2009.html (accessed on 10 July 2019).
- Ministry of Social Development of Mexico (SEDESOL). Official Mexican Standard NOM-CCA-023-ECOL/1993. México. 1993. Available online: http://www.paot.org.mx/centro/ine-semarnat/gacetas/GE27.pdf (accessed on 10 July 2019).
- Legislación Secundaria del Ministerio de Ambiente de Guayaquil. Norma de Calidad Ambiental y de Descarga de Efluentes: Recurso Agua. Guayaquil. 2004. Available online: http://www.industrias.ec/archivos/CIG/file/CARTELERA/ReformaAnexo28feb2014FINAL.pdf (accessed on 10 July 2019).
- Water and Sewerage Service of Lima Peru (SEDAPAL). Maximum Allowable Values for Non-Domestic Wastewater Discharges; SEDAPAL: Lima, Peru, 2009; Available online: http://www.sedapal.com.pe/documents/10154/fedf8405-1bc2-428e-9d8d-a1c2ad009f53G (accessed on 10 July 2019).
- State Secretariat for the Environment and Natural Resources. Environmental Standard on Water Quality and Discharge Control; State Secretariat for the Environment and Natural Resources: Santo Domingo, Dominican Republic, 2003. Available online: http://www2.congreso.gob.pe/sicr/cendocbib/con4_uibd.nsf/99222C6086A3A87F05257DCD004F3460/$FILE/NA-AG-001-03.pdf (accessed on 10 July 2019).
- UNEP. Environmental Impacts of Trade Liberalization and Policies for the Sustainable Management of Natural Resources; UNEP: Kampala, Uganda, 1999. [Google Scholar]
- Department of the Presidency and Spokesperson of the Government of the Community of Madrid. Law 10/1993, of 26 October, on Industrial Liquid Discharges into the Integral Sanitation System; Department of the Presidency and Spokesperson of the Government of the Community of Madrid: Madrid, Spain, 2005; Available online: http://www.madrid.org/wleg_pub/secure/normativas/contenidoNormativa.jsf?opcion=VerHtml&nmnorma=374&cdestado=P#no-back-button (accessed on 10 July 2019).
- Kathmandu Upatyaka Khanepani Limited, Ministry of Urban Development Government of Nepal for the Asian Development Bank. NEP. Kathmandu Valley Wastewater Management Project. Nepal. 2013. Available online: https://www.adb.org/sites/default/files/linked-documents/43524-014-nep-ieeab.pdf (accessed on 10 July 2019).
- Ministry of Social Security National Solidarity and Environment and Sustainable Development (Environment and Sustainable Development Division). Standards for Effluent Discharge Regulations; Ministry of Social Security National Solidarity and Environment and Sustainable Development: Port Louis, Mauritius, 2003.
- United Nations (UN). Goal 3: Ensure a Healthy Life and Promote Well-Being for All People at All Ages. 2017. Available online: https://www.un.org/sustainabledevelopment/es/health/ (accessed on 10 July 2019).
- United Nations (UN). Goal 6: Ensure Water Availability, Sustainable Management and Sanitation for All. 2017. Available online: https://www.un.org/sustainabledevelopment/es/water-and-sanitation/ (accessed on 10 July 2019).
- Shafiq, M.; Alazaba, A.; Amin, M.T. Removal of Heavy Metals from Wastewater using Date Palm as a Biosorbent: A Comparative Review. Sains Malays. 2018, 47, 35–49. [Google Scholar] [CrossRef]
- Ahmed, H. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. J. Hous. Build. Nat. Res. Cent. (HBRC J.) 2013, 9, 276–282. [Google Scholar]
- Rodríguez-Estupiñán, P.; Giraldo, L.; Moreno-Piraján, J.C. Adsorción simple y competitiva de níquel y cadmio sobre carbón activado granular: Efecto del pH. Afinidad 2010, 67, 449–454. [Google Scholar]
- Segovia-Sandoval, S.J.; Ocampo-Pérez, R.; Berber-Mendoza, M.S.; Leyva-Ramos, R.; Jacobo-Azuara, A.; Medellin-Castillo, N.A. Alnut shell treated with citric acid and its application as biosorbent in the removal of Zn (II). J. Wat. Proc. Eng. 2018, 25, 45–53. [Google Scholar] [CrossRef]
- Blandón-Castaño, G.; Dávila-Arias, M.; Rodríguez-Valencia, N. Microbiological and Physical-Chemical Characterization of the Pulp of Single Coffee and with Mucilage, in the Process of Worm Composting. Cenicafé 1999, 50, 5–23. [Google Scholar]
- Castillo Corella, E.; Acosta, Y.; Betancourt, N.N.; Castellanos, E.; Matos, M.; Cobos, V.; Jover, M. Utilización de la pulpa de café en la alimentación de alevines de tilapia roja Eduardo. Res. AquaTIC 2002, 16, 1–7. [Google Scholar]
- Houbron, E.; Cano, V.; Reyes, L.C.; Rustrian, E. En busca de una solución sustentable para el tratamiento de los desechos del café. Gac. Univ. Ver. 2007. Available online: https://www.uv.mx/gaceta/Gaceta101/101/ABCiencia/ABCIencia_08.htm (accessed on 10 July 2019).
- Yoplac, I.; Yalta, J.; Vásquez, H.V.; Maicelo, J.L. Efecto de la alimentación con pulpa de café (Coffea arabica) en los índices productivos de cuyes (Cavia porcellus L.) raza Perú. Rev. Investig. Vet. Perú 2017, 28, 549–561. [Google Scholar] [CrossRef]
- Aristizábal-Marulanda, V.; Chacón-Perez, Y.; Cardona Alzate, C.A. The biorefinery concept for the industrial valorization of coffee processing by-products. In Handbook of Coffee Processing By-Products; Academic Press: Manizales, Colombia, 2017; pp. 63–92. [Google Scholar] [CrossRef]
- Bernal, I. Análisis de Alimentos, 2nd ed.; Academia Colombiana de Ciencias Exacta físicas y Naturales: Bogotá, Colombia, 1998. [Google Scholar]
- ASTM International. ANSI/ASTM D1103-60: Method of Test for Alpha-Cellulose in Wood; ASTM International (ASTM): West Conshohocken, PA, USA, 1960. [Google Scholar]
- ASTM International. ANSI/ASTM D1106-56: Standard Test Method for Acid-Insoluble Lignin in Wood; ASTM International (ASTM): West Conshohocken, PA, USA, 2001. [Google Scholar]
- Cenicafé. Valorization of Coffee By-Products. 2011. Available online: https://www.cenicafe.org/es/index.php/cultivemos_cafe/manejo_de_subproductos/cultivemos_cafe_valorizacion_de_los_subproductos_del_cafe (accessed on 10 July 2019).
- Tejada-Tovar, C.; Villabona-Ortíz, A.; Garcés-Jaraba, L. Adsorption of heavy metals in wastewater using materials of biological origin. Tecno Lógicas 2015, 18, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Calderón, C. Manual Para la Interpretación de Espectros Infrarrojos; Universidad Nacional de Colombia: Bogotá, Colombia, 1995. [Google Scholar]
- Núñez, N. Development of Biodegradable Lubricating Grease Formulations Based on Vegetable Oils and Cellulose Derivatives. Ph.D. Thesis, Huelva University, Huelva, Spain, 2016. Available online: http://rabida.uhu.es/dspace/bitstream/handle/10272/12426/Desarrollo_de_formulaciones.pdf?sequence=2 (accessed on 10 July 2019).
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Jamaica, M. Adsorción con pulpa de café químicamente modificada. Una Estrategia Didáctica Basada en SPE Para la Enseñanza de Espectroscopia Infrarroja; Tesis de Pregrado; Universidad Pedagógica Nacional: Bogotá, Colombia, 2019. [Google Scholar]
- Hallberg, K.B.; Johnson, D.B. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Sci. Total Environ. 2005, 338, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Sutirman, Z.A.; Sanagi, M.M.; Abd, K.; Wan, W.; Jume, B.H. Equilibrium, Kinetic and Mechanism Studies of Cu(II) and Cd(II) Ions Adsorption by Modified Chitosan Beads. Int. J. Biol. Macromol. 2018, 116, 255–263. [Google Scholar] [CrossRef] [PubMed]
Parameters | Result % m/m | Bibliographic Reports | Interval | Methodology Used | |||
---|---|---|---|---|---|---|---|
Blandón et al. (1999) [32] | Castillo et al. (2002) [33]; Houbron et al. (2007) [34] | Yoplac (2017) [35] | Aristizábal, Chacón and Cardona (2017) [36] | ||||
% Total Carbohydrates | 48.50 ± 0.00 | 69.31 | DNR * | DNR | DNR | 48.50–69.31 | ** |
% Ash | 10.43 ± 0.18 | 6.66 | 5.43 | 11.95 | 4.99–8.90 | 4.99–11.95 | [37] a |
% Cellulose | 29.93 ± 0.21 | DNR | 43.28 | DNR | 18.65–63.00 | 18.65–63.00 | [38] b |
% Raw Fiber | 16.29 ± 0.50 | 11.43 | 20.23 | 19.29 | DNR | 11.43–20.23 | [37] c |
% Fats and Oils | 1.85 ± 0.08 | 1.60 | DNR | 3.48 | 2.00–2.90 | 1.60–3.48 | [37] d |
% Humidity | 12.40 ± 0.00 | 74.83 | DNR | 10.09 | DNR | 10.09–74.83 | [37] e |
% Lignin | 19.25 ± 0.16 | DNR | 36.89 | DNR | 12.20–17.50 | 12.20–36.89 | [39] f |
% Total Protein | 10.53 ± 0.64 | 11.00 | 11.20 | 14.03 | 8.00–11.50 | 8.00–14.03 | [37] g |
Band Wavelength (cm−1) | Description of the Band [42] | Explanation | Conclusion |
---|---|---|---|
3320 | Stretch-OH | The bands are possibly associated with the chemical structures of lignin and cellulose. Cellulose is generally one of the linear homopolymers in a higher proportion of lignocellulosic materials, whose condensed formula is (C6H10O5)n; this is made up of units of glucose bound together by 1–4 links. Among the functional groups to be highlighted are the OH groups of C1 and C4, in addition to hydroxymethyl alcohol [43]. Lignin, as an amorphous three-dimensional polymer, settled by phenylpropane units, is the most abundant compared to cellulose. The phenylpropane units are joined by alkyl-aril-ether links [43]. | The infrared spectrum of the CP presents confirmatory bands for the functional groups present in the cellulose and lignin molecules, thus confirming what was determined in Table 1. In turn, it is essential to know these organic functional groups, as they are possibly those that perform electrostatic interactions with the chemical species of Mn (II) in aqueous solution. |
2960 | Group Tension C-H-CH3 | ||
2820 | Confirmation band de C-H | ||
1725 | Stretch C=O | ||
1380 | Group flex–CH3 | ||
1250 | Stretching aromatic ethers C-O-C asymmetric | ||
1050 | Alcohol Confirmation Band |
Contact Time (min.) | C (mg·L−1) | (Ce–C) (mg·L−1) | qt (mg·g−1) | (qe–qt) | t/qt |
---|---|---|---|---|---|
0 | 100.00 | 0.00 | 0.00 | 46.60 | 0.00 |
5 | 55.16 | 44.84 | 2.24 | 44.35 | 2.23 |
10 | 48.36 | 51.64 | 2.58 | 44.01 | 3.87 |
15 | 46.27 | 53.73 | 2.69 | 43.91 | 5.58 |
30 | 44.47 | 55.53 | 2.78 | 43.82 | 10.80 |
45 | 45.37 | 54.63 | 2.73 | 43.86 | 16.48 |
60 | 39.89 | 60.11 | 3.01 | 43.59 | 19.96 |
75 | 38.32 | 61.68 | 3.08 | 43.51 | 24.32 |
90 | 46.60 | 53.40 | 2.67 | 43.93 | 33.71 |
105 | 46.68 | 53.32 | 2.67 | 43.93 | 39.39 |
120 | 46.56 | 53.44 | 2.67 | 43.92 | 44.91 |
Concentration Mn (II) (mg·L−1) | Absorbances (Maximum Absorption Wavelength: 279.5 nm; Slit: 0.2 nm) | Average Absorbance | Final Concentration Mn (II) (mg·L−1) | |
---|---|---|---|---|
20 | 0.150 | 0.140 | 0.150 | 5.22 |
50 | 0.420 | 0.420 | 0.420 | 15.30 |
100 | 0.290 | 0.290 | 0.290 | 39.85 |
150 | 0.410 | 0.430 | 0.420 | 70.41 |
250 | 0.390 | 0.390 | 0.390 | 145.43 |
500 | 0.400 | 0.390 | 0.390 | 361.12 |
Acid Groups (mmol·g−1) | Basic Groups (mmol·g−1) | pHpzc |
---|---|---|
0.280 | 0.170 | 3.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez Aguilar, D.L.; Rodríguez Miranda, J.P.; Baracaldo Guzmán, D.; Esteban Muñoz, J.A. Using Coffee Pulp as Bioadsorbent for the Removal of Manganese (Mn (II)) from Synthetic Wastewater. Water 2020, 12, 2500. https://doi.org/10.3390/w12092500
Gómez Aguilar DL, Rodríguez Miranda JP, Baracaldo Guzmán D, Esteban Muñoz JA. Using Coffee Pulp as Bioadsorbent for the Removal of Manganese (Mn (II)) from Synthetic Wastewater. Water. 2020; 12(9):2500. https://doi.org/10.3390/w12092500
Chicago/Turabian StyleGómez Aguilar, Dora Luz, Juan Pablo Rodríguez Miranda, Deisy Baracaldo Guzmán, and Javier Andrés Esteban Muñoz. 2020. "Using Coffee Pulp as Bioadsorbent for the Removal of Manganese (Mn (II)) from Synthetic Wastewater" Water 12, no. 9: 2500. https://doi.org/10.3390/w12092500
APA StyleGómez Aguilar, D. L., Rodríguez Miranda, J. P., Baracaldo Guzmán, D., & Esteban Muñoz, J. A. (2020). Using Coffee Pulp as Bioadsorbent for the Removal of Manganese (Mn (II)) from Synthetic Wastewater. Water, 12(9), 2500. https://doi.org/10.3390/w12092500