Mitigation Plan and Water Harvesting of Flashflood in Arid Rural Communities Using Modelling Approach: A Case Study in Afouna Village, Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site Visit
2.3. Hydrological Analysis
2.3.1. Digital Elevation Model
2.3.2. Basin Model: WMS
2.3.3. Rainfall Data Type Determination
2.3.4. Accumulated Rainfall Data
2.3.5. Return Period Calculations using Hyfran
2.3.6. Runoff Water: HEC-HMS
2.3.7. Soil Analysis
2.3.8. Rate of Sedimentation
- TE using the Churchill curve is 35% [69].
- dBD is assumed to be 1.23 ton/m3 (average value).
- A is the drainage area, which is 405 km2.
- SY for the Nile delta region is assumed to be 40 ton/km2/year
2.3.9. Pond Design
2.3.10. Hydrus 3D: Groundwater Recharge
3. Results and Discussion
3.1. Basin Model: WMS
3.2. Accumulated Rainfall Data
3.3. Return Period Using Hyfran
3.4. Runoff Water: HEC-HMS
3.5. Model Validation
3.6. Pond Design and Groundwater Recharging
3.7. Infiltration Pond Cost Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Afandi, G.; Morsy, M. Developing an early warning system for flash flood in Egypt: Case study Sinai Peninsula. In Flash Floods in Egypt; Negm, A.M., Ed.; Springer: Berlin, Germany, 2019. [Google Scholar]
- Fathy, I.; Abd-Elhamid, H.F.; Negm, A.M. Prediction and mitigation of flash floods in egypt. In Flash Floods in Egypt; Negm, A.M., Ed.; Springer: Berlin, Germany, 2019. [Google Scholar]
- Kumar, A.; Gupta, A.K.; Bhambri, R.; Verma, A.; Tiwari, S.K.; Asthana, A.K.L. Assessment and review of hydrometeorological aspects for cloudburst and flash flood events in the third pole region (Indian Himalaya). Polar Sci. 2018, 18, 5–20. [Google Scholar] [CrossRef]
- Lin, X. Flash floods in arid and semi-arid zones. In Proceedings of the Technical Documents in Hydrology, Paris, France, 1999. Available online: https://pdfs.semanticscholar.org/49b8/4acb36dba77bf01dcbf453974e3a160a018e.pdf?_ga=2.37376672.1055313888.1599730210-2051002838.1589894070 (accessed on 9 September 2020).
- Archer, D.R.; Fowler, H.J. Characterising flash flood response to intense rainfall and impacts using historical information and gauged data in Britain. J. Flood Risk Manag. 2018, 11, S121–S133. [Google Scholar] [CrossRef]
- Faccini, F.; Luino, F.; Paliaga, G.; Sacchini, A.; Turconi, L.; de Jong, C. Role of rainfall intensity and urban sprawl in the 2014 flash flood in Genoa City, Bisagno catchment (Liguria, Italy). Appl. Geogr. 2018, 98, 224–241. [Google Scholar] [CrossRef]
- U.S. Department of Commerce. Flood and Flash Flood Definitions; NOAA, National Weather Service, Ed.; NOAA: Miami, FL, USA, 2015. [Google Scholar]
- Mashaly, J.; Ghoneim, E. Flash flood hazard using optical, radar, and stereo-pair derived dem: Eastern desert, egypt. Remote Sens. 2018, 10, 1204. [Google Scholar] [CrossRef] [Green Version]
- Youssef, A.M.; Hegab, M.A. Flood-hazard assessment modeling using multicriteria analysis and gis. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 229–257. [Google Scholar] [CrossRef]
- Cools, J.; Vanderkimpen, P.; El Afandi, G.; Abdelkhalek, A.; Fockedey, S.; El Sammany, M.; Abdallah, G.; El Bihery, M.; Bauwens, W.; Huygens, M. An early warning system for flash floods in hyper-arid Egypt. Nat. Hazards Earth Syst. Sci. 2012, 12, 443–457. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Rare Storm over Mediterranean Sea. Available online: https://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2019-10-26 (accessed on 30 October 2019).
- Negm, A.M.; Omran, E.-S.E. Introduction to “flash floods in Egypt”. In Flash Floods in Egypt; Negm, A.M., Ed.; Springer: Berlin, Germany, 2019. [Google Scholar]
- Romero, R.; Emanuel, K. Climate change and hurricane-like extratropical cyclones: Projections for north atlantic polar lows and medicanes based on CMIP5 models. J. Clim. 2017, 30, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Cooke, R.U.; Brunsden, D.; Doornkamp, J.C. Urban Geomorphology in Drylands; Oxford University Press: Oxford, UK, 1982; p. 324. [Google Scholar]
- Abuzied, S.; Yuan, M.; Ibrahim, S.; Kaiser, M.; Saleem, T. Geospatial risk assessment of flash floods in Nuweiba area, Egypt. J. Arid Environ. 2016, 133, 54–72. [Google Scholar] [CrossRef]
- Gabr, S.; El Bastawesy, M. Estimating the flash flood quantitative parameters affecting the oil-fields infrastructures in Ras Sudr, Sinai, Egypt, during the January 2010 event. Egypt. J. Remote Sens. Space Sci. 2015, 18, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Monsef, H.A.-E. A mitigation strategy for reducing flood risk to highways in arid regions: A case study of the El-Quseir-Qena highway in Egypt. J. Flood Risk Manag. 2018, 11, S158–S172. [Google Scholar] [CrossRef]
- Omran, E.-S.E. Egypt’s Sinai desert cries: Flash flood hazard, vulnerability, and mitigation. In Flash Floods in Egypt; Negm, A.M., Ed.; Springer: Berlin, Germany, 2019. [Google Scholar]
- Ebaid, H.M.; Farag, H.A.; Falaky, A.A.E. Using gis and remote sensing approaches to delineate potential areas for runoff management applications in Egypt. Int. J. Environ. Sci. Eng. (IJESE) 2016, 7, 85–93. [Google Scholar]
- Abu Elfadl, J.; Gouda, N. Flood Losses Report, Youm7. 2015. Available online: https://bit.ly/3idaBVn (accessed on 9 September 2020).
- Chan, N.W.; Ghani, A.A.; Samat, N.; Hasan, N.N.N.; Tan, M.L. Integrating structural and non-structural flood management measures for greater effectiveness in flood loss reduction in the kelantan river basin, malaysia. In Proceedings of the AICCE’19: Transforming the Nation for a Sustainable Tomorrow, Penang, Malaysia, 21–22 August 2019; pp. 1151–1162. [Google Scholar]
- Kumar, M.; Sharif, M.; Ahmed, S. Flood risk management strategies for national capital territory of Delhi, India. ISH J. Hydraul. Eng. 2017, 25, 248–259. [Google Scholar] [CrossRef]
- Plate, E.J. Flood risk and flood management. J. Hydrol. 2002, 267, 2–11. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, X. Evaluating the effects of low impact development practices on urban flooding under different rainfall intensities. Water 2017, 9, 548. [Google Scholar] [CrossRef]
- Peter, A.; Mathew, A. Structural flood defence measures and effects on the surroundings. EPH Int. J. Appl. Sci. 2018, 4, 1–14. [Google Scholar]
- Destro, E.; Amponsah, W.; Nikolopoulos, E.I.; Marchi, L.; Marra, F.; Zoccatelli, D.; Borga, M. Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event. J. Hydrol. 2018, 558, 225–237. [Google Scholar] [CrossRef]
- Hasan, A.S.; Saha, R.R. A Study on the flood damage and mitigation measures of floods occurring in Bangladesh at the last decade. In Proceedings of the 1st National Conference on Water Resources Engineering (NCWRE), Chittagong University of Engineering and Technology, Chittagong, Bangladesh, 21–22 March 2018. [Google Scholar]
- Sikorska, A.E.; Viviroli, D.; Seibert, J. Effective precipitation duration for runoff peaks based on catchment modelling. J. Hydrol. 2018, 556, 510–522. [Google Scholar] [CrossRef]
- Kim, R.H.; Lee, S.; Kim, Y.M.; Lee, J.H.; Kim, S.K.; Kim, S.G. Pollutants in rainwater runoff in Korea: Their impacts on rainwater utilization. Environ. Technol. 2005, 26, 411–420. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Xia, J.; Huang, J.; Jiang, T. Flood risk and its reduction in China. Adv. Water Resour. 2019, 130, 37–45. [Google Scholar] [CrossRef]
- de Ruig, L.T.; Haer, T.; de Moel, H.; Botzen, W.J.W.; Aerts, J.C.J.H. A micro-scale cost-benefit analysis of building-level flood risk adaptation measures in Los Angeles. Water Resour. Econ. 2019, 100147. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Kreibich, H.; Vorogushyn, S.; Aerts, J.; Arnbjerg-Nielsen, K.; Barendrecht, M.; Bates, P.; Borga, M.; Botzen, W.; Bubeck, P.; et al. Hess opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrol. Earth Syst. Sci. 2018, 22, 5629–5637. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.R.; Rahman, A.; Chowdhury, S.H. Challenges for achieving sustainable flood risk management. J. Flood Risk Manag. 2018, 11, S352–S358. [Google Scholar] [CrossRef] [Green Version]
- Giri, B.S.; Gun, S.; Pandey, S.; Trivedi, A.; Kapoor, R.T.; Singh, R.P.; Abdeldayem, O.M.; Rene, E.R.; Yadav, S.; Chaturvedi, P.; et al. Reusability of brilliant green dye contaminated wastewater using corncob biochar and Brevibacillus parabrevis: Hybrid treatment and kinetic studies. Bioengineered 2020, 11, 743–758. [Google Scholar] [CrossRef] [PubMed]
- Ramírez Calderón, O.A.; Abdeldayem, O.M.; Pugazhendhi, A.; Rene, E.R. Current updates and perspectives of biosorption technology: An alternative for the removal of heavy metals from wastewater. Curr. Pollut. Rep. 2020, 6, 8–27. [Google Scholar] [CrossRef]
- Al-Sakkari, E.G.; Abdeldayem, O.M.; Genina, E.E.; Amin, L.; Bahgat, N.T.; Rene, E.R.; El-Sherbiny, I.M. New alginate-based interpenetrating polymer networks for water treatment: A response surface methodology based optimization study. Int. J. Biol. Macromol. 2020, 155, 772–785. [Google Scholar] [CrossRef]
- United Nations. About the Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 20 June 2020).
- Abdelhafez, A.A.; Metwalley, S.M.; Abbas, H.H. Irrigation: Water resources, types and common problems in Egypt. In Technological and Modern Irrigation Environment in Egypt; Negm, A., Ed.; Springer Water: Cham, Switzerland, 2020; pp. 15–34. [Google Scholar] [CrossRef]
- Yassen, A.N.; Nam, W.-H.; Hong, E.-M. Impact of climate change on reference evapotranspiration in Egypt. Catena 2020, 194. [Google Scholar] [CrossRef]
- Abdelrady, A.; Sharma, S.; Sefelnasr, A.; El-Rawy, M.; Kennedy, M. Analysis of the Performance of Bank Filtration for Water Supply in Arid Climates: Case Study in Egypt. Water 2020, 12, 1816. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Gadhiraju, S.R.; Kadam, A.; Bhagat, V. Identification of groundwater recharge-based potential rainwater harvesting sites for sustainable development of a semiarid region of southern India using geospatial, AHP, and SCS-CN approach. Arab. J. Geosci. 2020, 13. [Google Scholar] [CrossRef]
- Wakode, H.B.; Baier, K.; Jha, R.; Azzam, R. Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. Int. Soil Water Conserv. Res. 2018, 6, 51–62. [Google Scholar] [CrossRef]
- Allen, V. Rainwater harvesting and recharge techniques for flood control and improved stormwater quality. In Proceedings of the 55th Annual NM Water Conference, How Will Institutions Evolve to Meet Our Water Needs in the Next Decade? Corbett Center, New Mexico State University, Las Cruces, NM, USA, 1–3 December 2010. [Google Scholar]
- Khan, D.; Rahman, S.; Haque, A.; Chen, A.; Hammond, M.; Djordjevi, S.; Butler, D. Flood damage assessment for Dhaka City, Bangladesh. In Comprehensive Flood Risk Management; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, X.; Li, Y.; Yang, H.; Tanaka, K. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area. J. Clean. Prod. 2019, 222, 373–380. [Google Scholar] [CrossRef]
- Freni, G.; Liuzzo, L. Effectiveness of rainwater harvesting systems for flood reduction in residential urban areas. Water 2019, 11, 1389. [Google Scholar] [CrossRef] [Green Version]
- Oirere, S. Rainwater Harvesting Seen as Solution for Drought and Flood Control. Available online: https://www.alternet.org/2009/04/rainwater_harvesting_seen_as_solution_for_drought_and_flood_control/ (accessed on 14 July 2020).
- Prinz, D.; Singh, A. Technological Potential for Improvements of Water Harvesting. Available online: http://web.stanford.edu/~cbauburn/basecamp/dschool/homeproject/water_harvesting_improvements_technology.pdf (accessed on 9 September 2020).
- Borodinecs, A.; Davydov, R.; Antonov, V.; Molodtsov, D.; Cheremisin, A.; Korablev, V.; Sergeev, V.; Vatin, N. The simulation model for a flood management by flood control facilities. MATEC Web Conf. 2018, 245. [Google Scholar] [CrossRef] [Green Version]
- Komolafe, A.A.; Herath, S.; Avtar, R. Development of generalized loss functions for rapid estimation of flood damages: A case study in Kelani River basin, Sri Lanka. Appl. Geomat. 2017, 10, 13–30. [Google Scholar] [CrossRef]
- Ahiabor, G. Rainwater Harvesting: An Answer to Urban Flood Control. Available online: https://www.graphic.com.gh/features/features/rainwater-harvesting-an-answer-to-urban-flood-control.html (accessed on 14 July 2020).
- Duc Tran, D.; van Halsema, G.; Hellegers, P.J.G.J.; Phi Hoang, L.; Quang Tran, T.; Kummu, M.; Ludwig, F. Assessing impacts of dike construction on the flood dynamics of the Mekong Delta. Hydrol. Earth Syst. Sci. 2018, 22, 1875–1896. [Google Scholar] [CrossRef] [Green Version]
- Karamouz, M.; Heydari, Z. Conceptual design framework for coastal flood best management practices. J. Water Resour. Plan. Manag. 2020, 146. [Google Scholar] [CrossRef]
- Omran, E.-S.E. Egypt’s Sinai desert cries: Utilization of flash flood for a sustainable water management. In Flash Floods in Egypt; Negm, A.M., Ed.; Springer: Berlin, Germany, 2019. [Google Scholar]
- Morsy, K.M.; Morsy, A.M.; Hassan, A.E. Groundwater sustainability: Opportunity out of threat. Groundw. Sustain. Dev. 2018, 7, 277–285. [Google Scholar] [CrossRef]
- Smith, K.; Ward, R. Floods: Physical Processes and Human Impacts; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Zhao, W.; Ma, J. Landscape applications of rainwater resources in urban green space: A case study of green space reconstruction along Riverside Street in Suzhou. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Hangzhou, China, 17–19 July 2019. [Google Scholar]
- Laity, J.J. Deserts and Desert Environments; John Wiley & Sons: New York, NY, USA, 2008; Volume 3, p. 360. [Google Scholar]
- Wheater, H.; Al-Weshah, R.A. Hydrology of wadi systems. In Proceedings of the Technical documents in hydrology, Paris, France, 2002. Available online: https://hydrologie.org/BIB/Publ_UNESCO/TD_055_2002.pdf (accessed on 9 September 2020).
- U.S. Geological Survey (USGS). Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-non?qt-science_center_objects=0#qt-science_center_objects (accessed on 14 July 2020).
- U.S. Department of Agriculture (USDA). Urban Hydrology for Small Watersheds; Soil Conservation Service: Washington, DC, USA, 1986. [Google Scholar]
- U.S. Department of Agriculture (USDA). Design Hydrographs. In National Engineering Handbook, Part 630; Soil Conservation Service: Washington, DC, USA, 1972. [Google Scholar]
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Curve Number (Scs-Cn) Methodology; Springer Science and Business Media Dordrecht: Berlin, Germany, 2003; Volume 42. [Google Scholar]
- Jenner, L. NASA-NASA’s Goddard Space Flight Center. Available online: https://www.nasa.gov/goddard (accessed on 14 July 2020).
- National Aeronautics and Space Administration (NASA). Total Rainfall. Available online: https://earthobservatory.nasa.gov/global-maps/TRMM_3B43M (accessed on 30 October 2019).
- McBain, W. Twenty-first century flood risk management. In Flood Risk; ICE: London, UK, 2012; pp. 7–22. [Google Scholar] [CrossRef]
- Padiyedath Gopalan, S.; Kawamura, A.; Takasaki, T.; Amaguchi, H.; Azhikodan, G. An effective storage function model for an urban watershed in terms of hydrograph reproducibility and Akaike information criterion. J. Hydrol. 2018, 563, 657–668. [Google Scholar] [CrossRef]
- Egyptian Code for Soil Mechanics and Foundation Design and Execution; Code No. 202/7; Seventh Part; Retaining Structure: Cairo, Egypt, 2007.
- Bube, K.P.; Trimble, S.W. Revision of the churchill reservoir trap efficiency curves using smoothing splines. Water Resour. Bull. 1986, 22, 1–5. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (U.S. EPA). Storm Water Management Model (SWMM). Available online: https://www.epa.gov/water-research/storm-water-management-model-swmm (accessed on 14 July 2020).
- Ramakrishnan, D.; Bandyopadhyay, A.; Kusuma, K.N. SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India. J. Earth Syst. Sci. 2009, 118, 355–368. [Google Scholar] [CrossRef]
- Durga Rao, K.H.V.; Bhaumik, M.K. Spatial expert support system in selecting suitable sites for water harvesting structures—A case study of song watershed, Uttaranchal, India. Geocarto Int. 2003, 18, 43–50. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef] [Green Version]
- National Aeronautics and Space Administration (NASA). Rainfall Estimate Per Month. Available online: https://giovanni.gsfc.nasa.gov/giovanni (accessed on 14 July 2020).
- Abdulrazzak, M.; Elfeki, A.; Kamis, A.S.; Kassab, M.; Alamri, N.; Noor, K.; Chaabani, A. The impact of rainfall distribution patterns on hydrological and hydraulic response in arid regions: Case study Medina, Saudi Arabia. Arab. J. Geosci. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Patle, G. Probability analysis of consecutive days annual maximum rainfall for the design of surface drains in semi-arid Maharastra. Indian J. Soil Conserv. 2008, 36, 144–147. [Google Scholar]
- Barkotulla, M.; Rahman, M.; Rahman, M. Characterization and frequency analysis of consecutive days maximum rainfall at Boalia, Rajshahi and Bangladesh. J. Dev. Agric. Econ. 2009, 1, 121–126. [Google Scholar]
- Tilahun, K. The characterisation of rainfall in the arid and semi-arid regions of Ethiopia. Water SA 2007, 32. [Google Scholar] [CrossRef] [Green Version]
- Kwaku, X.S.; Duke, O. Characterization and frequency analysis of one day annual maximum and two to five consecutive days maximum rainfall of Accra, Ghana. ARPN J. Eng. Appl. Sci. 2007, 2, 27–31. [Google Scholar]
- Ballard, B.W.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SuDS Manual; CIRIA Publication: London, UK, 2015. [Google Scholar]
- Faures, J.M.; Eliasson, A.; Hoogeveen, J.; Vallee, D. AQUASTAT-FAO’s information system on water and agriculture. In GRID-Magazine of the IPTRID Network (FAO/United Kingdom); FAO: Rome, Italy, 2001. [Google Scholar]
- Mahmoud, S.H.; Alazba, A.A. The potential of in situ rainwater harvesting in arid regions: Developing a methodology to identify suitable areas using GIS-based decision support system. Arab. J. Geosci. 2014, 8, 5167–5179. [Google Scholar] [CrossRef]
- Mbilinyi, B.P.; Tumbo, S.D.; Mahoo, H.F.; Mkiramwinyi, F.O. GIS-based decision support system for identifying potential sites for rainwater harvesting. Phys. Chem. Earth Parts A/B/C 2007, 32, 1074–1081. [Google Scholar] [CrossRef]
- Zhang, D.; Gersberg, R.M.; Wilhelm, C.; Voigt, M. Decentralized water management: Rainwater harvesting and greywater reuse in an urban area of Beijing, China. Urban Water J. 2009, 6, 375–385. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Elagib, N.A.; Gaese, H.; Heinrich, J. Rainfall conditions and rainwater harvesting potential in the urban area of Khartoum. Resour. Conserv. Recycl. 2014, 91, 89–99. [Google Scholar] [CrossRef]
- Thomas, D.B. Soil and Water Conservation Manual for Kenya; SWCB, Ministry of Agriculture and Livestock Development and Marketing: Nairobi, Kenya, 1997. [Google Scholar]
- Paul, J.G. Rainwater management to prevent flooding and to enhance urban ecosystem services. In Proceedings of the 3rd International Rainwater Management Conference, Iloilo City, Panay, Philippines, 24–26 November 2010. [Google Scholar]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef] [Green Version]
- Mehrabadi, M.H.R.; Motevalli, M. Operation of rainwater harvesting on the roofs of residential buildings to reduce of urban flood: A case study in Tehran, Iran. World Appl. Sci. J. 2012, 17, 264–270. [Google Scholar]
- Cherqui, F.; Belmeziti, A.; Granger, D.; Sourdril, A.; Le Gauffre, P. Assessing urban potential flooding risk and identifying effective risk-reduction measures. Sci. Total Environ. 2015, 514, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Pavelic, P.; Srisuk, K.; Saraphirom, P.; Nadee, S.; Pholkern, K.; Chusanathas, S.; Munyou, S.; Tangsutthinon, T.; Intarasut, T.; Smakhtin, V. Balancing-out floods and droughts: Opportunities to utilize floodwater harvesting and groundwater storage for agricultural development in Thailand. J. Hydrol. 2012, 470–471, 55–64. [Google Scholar] [CrossRef]
Item | Boundary | Condition |
---|---|---|
1. | Top layer boundary | The top layer, defined as atmospheric boundary layer which obeys the general conditions of contact with atmosphere. |
2. | Sides boundary | The side boundaries defined as variable-flux boundaries to allow water to flow in all directions according to its depth. |
3. | Bottom layer boundary | The bottom layer defined to represent the groundwater table, noting that the groundwater table level is 57 m below the ground surface. |
No | Basin Name | Area (km2) | Basin Slope (m/m) | Max Flow Slope (m/m) | Max Stream Length (m) | Max Stream Slope (m/m) | Basin Length (m) | Basin Perimeter (m) | Basin Shape Factor (mi2/mi2) | Basin Average Elevation (m) | Lag Time (h) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1B | 83.5 | 0.0128 | 0.0042 | 16,091 | 0.0037 | 12,200 | 59,500 | 1.80 | 140 | 7.77 |
2 | 2B | 3.5 | 0.0122 | 0.0078 | 5241 | 0.0064 | 5900 | 17,600 | 9.73 | 30 | 3.61 |
3 | 3B | 44.9 | 0.0169 | 0.0083 | 14,146 | 0.0085 | 11,800 | 47,600 | 3.1 | 104 | 6.10 |
4 | 4B | 47.5 | 0.0137 | 0.0070 | 12,656 | 0.0067 | 10,800 | 46,300 | 2.47 | 124 | 6.63 |
5 | 5B | 39.1 | 0.0115 | 0.0047 | 16,371 | 0.0045 | 11,500 | 47,900 | 3.38 | 125 | 8.30 |
6 | 6B | 22.3 | 0.0100 | 0.0048 | 11,941 | 0.0037 | 9800 | 39,100 | 4.30 | 124 | 7.19 |
7 | 7B | 54.5 | 0.0104 | 0.0034 | 18,993 | 0.0033 | 13,400 | 67,900 | 3.30 | 133 | 9.67 |
8 | 8B | 109.7 | 0.0105 | 0.0037 | 18,076 | 0.0036 | 13,200 | 66,300 | 1.58 | 137 | 9.30 |
Regions | Region 1 (1B, 2B, 3B, 4B) | Region 2 (5B, 6B, 7B, 8B) |
---|---|---|
Year | Annual Maximum Precipitation (mm) | |
1998 | 14.03 | 28.96 |
1999 | 8.52 | 8.96 |
2000 | 22.63 | 24.41 |
2001 | 7.77 | 18.24 |
2002 | 21.60 | 25.30 |
2003 | 16.74 | 17.23 |
2004 | 7.64 | 11.52 |
2005 | 9.230 | 15.75 |
2006 | 10.14 | 12.46 |
2007 | 16.77 | 16.77 |
2008 | 30.86 | 37.82 |
2009 | 4.670 | 25.79 |
2010 | 5.10 | 3.950 |
2011 | 31.45 | 33.46 |
2012 | 19.08 | 24.21 |
2013 | 14.93 | 28.71 |
2014 | 8.70 | 6.97 |
2015 | 84.54 | 99.00 |
2016 | 8.29 | 15.12 |
2017 | 28.15 | 27.71 |
2018 | 28.47 | 18.36 |
2019 | 55.71 | 31.32 |
Depth (m) | Area (m2) | |
---|---|---|
50 Years | 100 Years | |
1 | 190,000 | 285,000 |
2 | 180,000 | 280,000 |
3 | 170,000 | 275,000 |
4 | 160,000 | 270,000 |
Test | Cl− (%) | SO3 (%) | Organic Matter (%) | pH | Coefficient of Permeability at Depths from (9–12 m) (m/s) | |
---|---|---|---|---|---|---|
Average | 0.028 | 0.018 | 0 | 8.3 | 9.8 × 10−3 | |
Egyptian code limits | Less than 0.04% | Less than 0.04% | 0 | - | ||
Soil Type | θr (m−3 m3) | θs (m−3 m3) | α (m−1) | n (-) | Ks (m/s) | L (-) |
Sand | 0.045 | 0.43 | 0.145 | 2.68 | 9.6 × 10−3 | 0.5 |
Process | Cost (EGP) | Cost ($) |
---|---|---|
Drilling | 5 (EGP/m3) | 0.31 |
Pitching | 300 (EGP/m2) | 18.75 |
Sand importing to the site (including cost of the sand) | 25 (EGP/m3) | 1.56 |
Depth | Area, (m2) | Radius, (m) | Perimeter, (m) | Lateral Area, (m2) |
50 years Return Period | ||||
1 | 190,000 | 246 | 1545 | 1545 |
2 | 180,000 | 239 | 1504 | 1504 |
3 | 170,000 | 233 | 1461 | 1461 |
4 | 160,000 | 226 | 1418 | 1418 |
5–8 | 160,000 for each 1 m | 226 for each 1 m | 1418 for each 1 m | 1418 for each 1 m |
Total | 1,340,000 | 11,600 | ||
Drilling cost, EGP | 7,200,000 | |||
Pitching cost, EGP | 3,700,000 | |||
Sand importing cost, EGP | 18,000,000 | |||
Total cost, EGP ($USD) | 28,900,000 ($1,806,250) | |||
Depth | Area (m2) | Radius, (m) | Perimeter, (m) | Lateral Area (m2) |
100 years return period | ||||
1 | 285,000 | 301 | 1892 | 1892 |
2 | 280,000 | 299 | 1875 | 1875 |
3 | 275,000 | 296 | 1858 | 1858 |
4 | 270,000 | 293 | 1842 | 1842 |
5–8 | 270,000 for each 1 m | 293 for each 1 m | 1842 for each 1 m | 1842 for each 1 m |
Total | 2,190,000 | 14,835 | ||
Drilling cost, EGP ($) | 11,200,000 | |||
Pitching cost, EGP | 4,320,000 | |||
Sand importing cost, EGP | 28,000,000 | |||
Total cost, EGP ($USD) | 43,520,000 ($2,720,000) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. Abdeldayem, O.; Eldaghar, O.; K. Mostafa, M.; M. Habashy, M.; Hassan, A.A.; Mahmoud, H.; M. Morsy, K.; Abdelrady, A.; Peters, R.W. Mitigation Plan and Water Harvesting of Flashflood in Arid Rural Communities Using Modelling Approach: A Case Study in Afouna Village, Egypt. Water 2020, 12, 2565. https://doi.org/10.3390/w12092565
M. Abdeldayem O, Eldaghar O, K. Mostafa M, M. Habashy M, Hassan AA, Mahmoud H, M. Morsy K, Abdelrady A, Peters RW. Mitigation Plan and Water Harvesting of Flashflood in Arid Rural Communities Using Modelling Approach: A Case Study in Afouna Village, Egypt. Water. 2020; 12(9):2565. https://doi.org/10.3390/w12092565
Chicago/Turabian StyleM. Abdeldayem, Omar, Omar Eldaghar, Mohamed K. Mostafa, Mahmoud M. Habashy, Ahmed A. Hassan, Hossam Mahmoud, Karim M. Morsy, Ahmed Abdelrady, and Robert W. Peters. 2020. "Mitigation Plan and Water Harvesting of Flashflood in Arid Rural Communities Using Modelling Approach: A Case Study in Afouna Village, Egypt" Water 12, no. 9: 2565. https://doi.org/10.3390/w12092565
APA StyleM. Abdeldayem, O., Eldaghar, O., K. Mostafa, M., M. Habashy, M., Hassan, A. A., Mahmoud, H., M. Morsy, K., Abdelrady, A., & Peters, R. W. (2020). Mitigation Plan and Water Harvesting of Flashflood in Arid Rural Communities Using Modelling Approach: A Case Study in Afouna Village, Egypt. Water, 12(9), 2565. https://doi.org/10.3390/w12092565