Advancing Knowledge on Cyanobacterial Blooms in Freshwaters
Abstract
:1. Introduction
2. Contributions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paerl, H.W. Mitigating harmful Cyanobacterial blooms in a human- and climatically-impacted world. Life 2014, 4, 988–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hannen, E.J.; Zwart, G.; van Agterveld, M.P.; Gons, H.J.; Ebert, J.; Laanbroek, H.J. Changes in Bacterial and Eukaryotic Community Structure after Mass Lysis of Filamentous Cyanobacteria Associated with Viruses. Appl. Environ. Microbiol. 1999, 65, 795–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vardaka, E.; Moustaka–Gouni, M.; Cook, C.M.; Lanaras, T. Cyanobacterial blooms and water quality in Greek waterbodies. J. Appl. Phycol. 2005, 17, 291–401. [Google Scholar] [CrossRef]
- Moustaka-Gouni, M.; Vardaka, E.; Michaloudi, E.; Kormas, A.K.; Tryfon, E.; Mihalatou, H.; Gkelis, S.; Lanaras, T. Plankton food web structure in a eutrophic polymictic lake with a history of toxic cyanobacterial blooms. Limnol. Oceanogr. 2006, 51, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H.W. Controlling harmful cyanobacterial blooms in a climatically more extreme world: Management options and research needs. J. Plankton Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- Genitsaris, S.; Kormas, K.A.; Moustaka-Gouni, M. Airborne algae and cyanobacteria: Occurrence and related health effects. Front. Biosci. 2011, 3, 772–787. [Google Scholar]
- Curren, E.; Leong, S.C.Y. Natural and anthropogenic dispersal of cyanobacteria: A review. Hydrobiologia 2020. [Google Scholar] [CrossRef]
- Herrera, N.; Florez, M.T.; Velasquez, J.P.; Echeverri, F. Effect of Phenyl-Acyl Compounds on the Growth, Morphology, and Toxin Production of Microcystis aeruginosa Kützing. Water 2019, 11, 236. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Huang, F.; Li, F.; Gu, Z.; Chen, R.; Zhang, Y. An Improved Logistic Model Illustrating Microcystis aeruginosa Growth under Different Turbulent Mixing Conditions. Water 2019, 11, 669. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.S.; Hall, R.K.; Aron, J.L.; Swanson, S.; Philbin, M.J.; Schafer, R.J.; Jones-Lepp, T.; Heggem, D.T.; Lin, J.; Wilson, E.; et al. An Ecological Function Approach to Managing Harmful Cyanobacteria in Three Oregon Lakes: Beyond Water Quality Advisories and Total Maximum Daily Loads (TMDLs). Water 2019, 11, 1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Qu, X.; Elser, J.J.; Peng, W.; Zhang, M.; Ren, Z.; Zhang, H.; Zhang, Y.; Yang, H. Impact of Nutrient and Stoichiometry Gradients on Microbial Assemblages in Erhai Lake and Its Input Streams. Water 2019, 11, 1711. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chen, H.; Gu, X.; Mao, Z.; Zeng, Q.; Ding, H. Dynamics of Cyanobacteria and Related Environmental Drivers in Freshwater Bodies Affected by Mitten Crab Culturing: A Study of Lake Guchenghu, China. Water 2019, 11, 2468. [Google Scholar] [CrossRef] [Green Version]
- Katsiapi, M.; Genitsaris, S.; Stefanidou, N.; Tsavdaridou, A.; Giannopoulou, I.; Stamou, G.; Michaloudi, E.; Mazaris, A.D.; Moustaka-Gouni, M. Ecological Connectivity in Two Ancient Lakes: Impact Upon Planktonic Cyanobacteria and Water Quality. Water 2020, 12, 18. [Google Scholar] [CrossRef] [Green Version]
- Tokodi, N.; DrobacBacković, D.; Lujić, J.; Šćekić, I.; Simić, S.; Đorđević, N.; Dulić, T.; Miljanović, B.; Kitanović, N.; Marinović, Z.; et al. Protected Freshwater Ecosystem with Incessant Cyanobacterial Blooming Awaiting a Resolution. Water 2020, 12, 129. [Google Scholar] [CrossRef] [Green Version]
- Khatun, S.; Iwata, T.; Kojima, H.; Ikarashi, Y.; Yamanami, K.; Imazawa, D.; Kenta, T.; Shinohara, R.; Saito, H. Linking Stoichiometric Organic Carbon–Nitrogen Relationships to planktonic Cyanobacteria and Subsurface Methane Maximum in Deep Freshwater Lakes. Water 2020, 12, 402. [Google Scholar] [CrossRef] [Green Version]
- Muhetaer, G.; Asaeda, T.; Jayasanka, S.M.D.H.; Baniya, M.B.; Abeynayaka, H.D.L.; Rashid, M.H.; Yan, H. Effects of Light Intensity and Exposure Period on the Growth and Stress Responses of Two Cyanobacteria Species: Pseudanabaenagaleata and Microcystis aeruginosa. Water 2020, 12, 407. [Google Scholar] [CrossRef] [Green Version]
- Chirico, N.; António, D.C.; Pozzoli, L.; Marinov, D.; Malagó, A.; Sanseverino, I.; Beghi, A.; Genoni, P.; Dobricic, S.; Lettieri, T. Cyanobacterial Blooms in Lake Varese: Analysis and Characterization over Ten Years of Observations. Water 2020, 12, 675. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Zhao, X.; Zhou, G.-J.; Liang, R.; Gou, T.; Xia, B.; Li, S.; Liu, C. Seasonal Succession of Phytoplankton Functional Groups and Driving Factors of Cyanobacterial Blooms in a Subtropical Reservoir in South China. Water 2020, 12, 1167. [Google Scholar] [CrossRef] [Green Version]
- Bižić, M.; Klintzsch, T.; Ionescu, D.; Hindiyeh, M.Y.; Günthel, M.; Muro-Pastor, A.M.; Eckert, W.; Urich, T.; Keppler, F.; Grossart, H.-P. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 2020, 6, eaax5343. [Google Scholar] [CrossRef] [Green Version]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widder, S.; Allen, R.J.; Pfeiffer, T.; Curtis, T.P.; Wiuf, C.; Sloan, W.T.; Cordero, O.X.; Brown, S.P.; Momeni, B.; Shou, W.; et al. Challenges in microbial ecology: Building predictive understanding of community function and dynamics. ISME J. 2016, 10, 2557–2568. [Google Scholar] [CrossRef] [Green Version]
- Kurmayer, R.; Christiansen, G.; Kormas, K.; Vyverman, W.; Verleyen, E.; Ramos, V.; Vasconcelos, V.; Salmaso, N. Sampling and metadata. In Molecular Tools for the Detection and Quantification of Toxigenic Cyanobacteria; Kurmayer, R., Sivonen, K., Wilmotte, A., Salmaso, N., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 19–42. [Google Scholar]
- Moustaka-Gouni, M.; Sommer, U.; Katsiapi, M.; Vardaka, E. Monitoring of cyanobacteria for water quality: Doing the necessary right or wrong? Mar. Freshw. Res. 2020, 71, 717–724. [Google Scholar] [CrossRef]
- Moustaka-Gouni, M.; Sommer, U.; Economou-Amilli, A.; Arhonditsis, G.B.; Katsiapi, M.; Papastergiadou, E.; Kormas, K.A.; Vardaka, E.; Karayanni, H.; Papadimitriou, T. Implementation of the Water Framework Directive: Lessons Learned and Future Perspectives for an Ecologically Meaningful Classification Based on Phytoplankton of the Status of Greek Lakes, Mediterranean Region. Environ. Manag. 2019, 64, 675–688. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vardaka, E.; Kormas, K.A. Advancing Knowledge on Cyanobacterial Blooms in Freshwaters. Water 2020, 12, 2583. https://doi.org/10.3390/w12092583
Vardaka E, Kormas KA. Advancing Knowledge on Cyanobacterial Blooms in Freshwaters. Water. 2020; 12(9):2583. https://doi.org/10.3390/w12092583
Chicago/Turabian StyleVardaka, Elisabeth, and Konstantinos Ar. Kormas. 2020. "Advancing Knowledge on Cyanobacterial Blooms in Freshwaters" Water 12, no. 9: 2583. https://doi.org/10.3390/w12092583
APA StyleVardaka, E., & Kormas, K. A. (2020). Advancing Knowledge on Cyanobacterial Blooms in Freshwaters. Water, 12(9), 2583. https://doi.org/10.3390/w12092583