Major and Trace Element Geochemistry of Korean Bottled Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Physicochemical Analyses
3. Results and Discussion
3.1. Physiochemical Parameters
3.2. Major Ion Geochemistry
3.3. Comparison of Labeled and Measured Ion Concentrations
3.4. Classification of Water Types
3.5. Source of Bottled Water
3.5.1. Groundwater-Derived Bottled Water
3.5.2. Desalinated Seawater
3.6. Trace-Element Geochemistry of Groundwater-Derived Bottled Waters
3.6.1. Lithium (Li) and Vanadium (V)
3.6.2. Barium (Ba)
3.6.3. Rubidium (Rb)
3.6.4. Chromium (Cr)
3.6.5. Gallium (Ga)
3.7. Trace Elements in Desalinated Water
3.8. Factors Controlling Geochemistry in Functional Water
3.9. Oxygen and Hydrogen Isotopes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sales of Drinking Water. Available online: http://stat.me.go.kr/nesis/mesp2/webStatistics/stat_main.jsp?tblID=DT_106N_ZZZ_003106&inq_gubun=1&lang=kor&list_id=106H_01_007002002001&l_interval=2 (accessed on 20 January 2020).
- Dürr, H.H.; Meybeck, M. Lithologic composition of the Earth’s continental surfaces derived from a new digital map emphasizing riverine material transfer. Glob. Biogeochem. Cycles 2005, 19, GB4S10. [Google Scholar] [CrossRef]
- Birke, M.; Rauch, U.; Harazim, B.; Lorenz, H.; Glatte, W. Major and trace elements in German bottled water, their regional distribution, and accordance with national and international standards. J. Geochem. Explor. 2010, 107, 245–271. [Google Scholar] [CrossRef]
- Brenčič, M.; Ferjan, T.; Gosar, M. Geochemical survey of Slovenian bottled waters. J. Geochem. Explor. 2010, 107, 400–409. [Google Scholar] [CrossRef]
- Brenčič, M.; Vreča, P. The use of a finite mixture distribution model in bottled water characterisation and authentication with stable hydrogen, oxygen and carbon isotopes—Case study from Slovenia. J. Geochem. Explor. 2010, 107, 391–399. [Google Scholar] [CrossRef]
- Frengstad, B.S.; Lax, K.; Tarvainen, T.; Jæger, Ø.; Wigum, B.J. The chemistry of bottled mineral and spring waters from Norway, Sweden, Finland and Iceland. J. Geochem. Explor. 2010, 107, 350–361. [Google Scholar] [CrossRef]
- Petrović, T.; Zlokolica-Mandić, M.; Veljković, N.; Vidojević, D. Hydrogeological conditions for the forming and quality of mineral waters in Serbia. J. Geochem. Explor. 2010, 107, 373–381. [Google Scholar] [CrossRef]
- Reimann, C.; Birke, M. Geochemistry of European Bottled Water; Gebr. Borntraeger Verlagsbuchhandlung: Stuttgart, Germany, 2010. [Google Scholar]
- Demetriades, A. General ground water geochemistry of Hellas using bottled water samples. J. Geochem. Explor. 2010, 107, 283–298. [Google Scholar] [CrossRef]
- Dinelli, E.; Lima, A.; De Vivo, B.; Albanese, S.; Cicchella, D.; Valera, P. Hydrogeochemical analysis on Italian bottled mineral waters: Effects of geology. J. Geochem. Explor. 2010, 107, 317–335. [Google Scholar] [CrossRef]
- Lourenço, C.; Ribeiro, L.; Cruz, J. Classification of natural mineral and spring bottled waters of Portugal using Principal Component Analysis. J. Geochem. Explor. 2010, 107, 362–372. [Google Scholar] [CrossRef]
- Bong, Y.S.; Ryu, J.S.; Lee, K.S. Characterizing the origins of bottled water on the South Korean market using chemical and isotopic compositions. Anal. Chim. Acta 2009, 631, 189–195. [Google Scholar] [CrossRef]
- Kim, G.E.; Ryu, J.S.; Shin, W.J.; Bong, Y.S.; Lee, K.S.; Choi, M.S. Chemical and isotopic compositions of bottled waters sold in Korea: Chemical enrichment and isotopic fractionation by desalination. Rapid Commun. Mass Spectrom. 2012, 26, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.E.; Shin, W.J.; Ryu, J.S.; Choi, M.S.; Lee, K.S. Identification of the origin and water type of various Korean bottled waters using strontium isotopes. J. Geochem. Explor. 2013, 132, 1–5. [Google Scholar] [CrossRef]
- Byrne, R.H. Inorganic speciation of dissolved elements in seawater: The influence of pH on concentration ratios. Geochem. Trans. 2002, 3, 11–16. [Google Scholar] [CrossRef]
- Birnhack, L.; Lahav, O. A new post-treatment process for attaining Ca2+, Mg2+, SO42– and alkalinity criteria in desalinated water. Water Res. 2007, 41, 3989–3997. [Google Scholar] [CrossRef] [PubMed]
- Status of Drinking-Water Inspection Agency. Available online: http://me.go.kr/home/web/policy_data/read.do?pagerOffset=40&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=10259&orgCd=&condition.deleteYn=N&seq=7358 (accessed on 22 January 2020).
- Lee, B.D.; Oh, Y.H.; Cho, B.W.; Yun, U.; Choo, C.O. Hydrochemical properties of groundwater used for Korea bottled waters in relation to geology. Water 2019, 11, 1043. [Google Scholar] [CrossRef] [Green Version]
- Kloppmann, W.; Vengosh, A.; Guerrot, C.; Millot, R.; Pankratov, I. Isotope and ion selectivity in reverse osmosis desalination: Geochemical tracers for man-made freshwater. Environ. Sci. Technol. 2008, 42, 4723–4731. [Google Scholar] [CrossRef]
- Li, D.; Wang, H. Recent developments in reverse osmosis desalination membranes. J. Mater. Chem. 2010, 20, 4551–4566. [Google Scholar] [CrossRef]
- Llenas, L.; Martínez-Lladó, X.; Yaroshchuk, A.; Rovira, M.; de Pablo, J. Nanofiltration as pretreatment for scale prevention in seawater reverse osmosis desalination. Desalin. Water Treat. 2011, 36, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Argust, P. Distribution of boron in the environment. Biol. Trace Elem. Res. 1998, 66, 131–143. [Google Scholar] [CrossRef]
- Lee, L.N.; Son, B.Y.; Yang, M.H.; Park, S.M.; Lee, W.S.; Park, J.H. Safety management and heavy metal residue status in groundwater (spring water), Korea. J. Korean Soc. Environ. Anal. 2018, 21, 198–207. [Google Scholar]
- Jeong, C.H.; Yang, J.H.; Lee, Y.J.; Lee, Y.C.; Choi, H.Y.; Kim, M.S.; Kim, H.K.; Kim, T.S.; Jo, B.U. Occurrences of uranium and radon-222 from groundwaters in various geological environment in the Hoengseong area. J. Eng. Geol. 2015, 25, 557–576. [Google Scholar] [CrossRef] [Green Version]
- Choo, C.O.; Lee, J.K.; Lee, C.J.; Park, K.H.; Jeong, G.C. Origin of B, Br and Sr in groundwater from Bukahn-myeon, Yeongcheon, Gyeongbuk Province, with emphasis on hydrochemistry. J. Eng. Geol. 2009, 19, 235–250. [Google Scholar]
- Guler, E.; Ozakdag, D.; Arda, M.; Yuksel, M.; Kabay, N. Effect of temperature on seawater desalination-water quality analyses for desalinated seawater for its use as drinking and irrigation water. Environ. Geochem. Health 2010, 32, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Bityukova, L.; Petersell, V. Chemical composition of bottled mineral waters in Estonia. J. Geochem. Explor. 2010, 107, 238–244. [Google Scholar] [CrossRef]
- Keresztes, S.; Tatár, E.; Mihucz, V.G.; Virág, I.; Majdik, C.; Zára, G. Leaching of antimony from polyethylene terephthalate (PET) bottles into mineral water. Sci. Total Environ. 2009, 407, 4731–4735. [Google Scholar] [CrossRef]
- Cicchella, D.; Albanese, S.; De Vivo, B.; Dinelli, E.; Giaccio, L.; Lima, A.; Valera, P. Trace elements and ions in Italian bottled mineral waters: Identification of anomalous values and human health related effects. J. Geochem. Explor. 2010, 107, 336–349. [Google Scholar] [CrossRef]
- Jeong, C.H.; Lee, Y.C.; Lee, Y.J.; Choi, H.Y.; Koh, G.W.; Moon, D.C.; Jung, C.Y.; Jo, S.B. Origin and hydrochemical characteristics of natural carbonated water at Seoqwipo, Jeju Island. J. Eng. Geol. 2016, 26, 515–529. [Google Scholar] [CrossRef] [Green Version]
- Hyun, I.H.; Yun, S.T.; Kim, H.R.; Kam, S.K. Occurrence of vanadium in groundwater of Jeju Island, Korea. J. Environ. Sci. Int. 2016, 25, 1563–1573. [Google Scholar] [CrossRef]
- Manufacture of Bottled Water or Desalinated Seawater. Available online: http://easylaw.go.kr/CSP/CnpClsMain.laf?popMenu=ov&csmSeq=536&ccfNo=4&cciNo=2&cnpClsNo=1 (accessed on 20 January 2020).
- Campos, V.; Buchler, P.M. Trace elements removal from water using modified activated carbon. Environ. Technol. 2008, 29, 123–130. [Google Scholar] [CrossRef]
- Barium in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality. Available online: https://www.who.int/water_sanitation_health/dwq/chemicals/barium.pdf (accessed on 20 January 2020).
- Lee, L.; Ahn, K.; Yang, M.; Choi, I.; Chung, H.; Lee, W.; Park, J. The study on the water quality characteristics of barium in the raw water of domestic natural mineral water. J. Korean Soc. Water Environ. 2017, 33, 416–423. [Google Scholar]
- Sung, I.H.; Choo, C.O.; Cho, B.W.; Lee, B.D.; Kim, T.K.; Lee, I.H. Hydrochemical Properties of the Groundwater Used for the Natural Mineral Waters in Precambrian Metamorphic Terrains, Korea. J. Korean Soc. Groundw. Environ. 1998, 5, 203–209. [Google Scholar]
- Gassama, N.; Kasper, H.U.; Dia, A.; Cocirta, C.; Bouhnik-LeCoz, M. Discrimination between different water bodies from a multilayered aquifer (Kaluvelly watershed, India): Trace element signature. Appl. Geochem. 2012, 27, 715–728. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.J.; DeYoung, J.H.; Seal, R.R.; Bradley, D.C. Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply; United States Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Kavanagh, L.; Keohane, J.; Cabellos, G.G.; Lloyd, A.; Cleary, J. Global lithium sources-industrial use and future in the electric vehicle industry: A review. Resources 2018, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Sha, Y.; Xin, H.; Li, S. Determination of trace vanadium (V) in seawater and freshwater by the catalytic kinetic spectrophotometric method. J. Ocean Univ. China 2010, 9, 343–349. [Google Scholar]
- Bolter, E.; Turekian, K.K.; Schutz, D.F. The distribution of rubidium, cesium and barium in the oceans. Geochim. Cosmochim. Acta 1964, 28, 1459–1466. [Google Scholar] [CrossRef]
- Chromium in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality. Available online: https://www.who.int/water_sanitation_health/water-quality/guidelines/chemicals/chromium.pdf?ua=1 (accessed on 12 June 2020).
- Henry, M.; Cahmbron, J. Physico-chemical, biological and therapeutic characteristics of electrolyzed reduced alkaline water (ERAW). Water 2013, 5, 2094–2115. [Google Scholar] [CrossRef]
- Kim, K.H.; Choi, H.J. A geochemical study on the thermal water and groundwater in the hot spring area, South Korea. J. Korean Earth Sci. Soc. 1998, 19, 22–34. [Google Scholar]
- Lee, K.S.; Kim, Y. Determining the seasonality of groundwater recharge using water isotopes: A case study from the upper North Han River basin, Korea. Environ. Geol. 2007, 52, 853–859. [Google Scholar] [CrossRef]
Type | pH | EC | Ca | Mg | Na | K | Cl | NO3 | SO4 | Alk | TDS | Li | B | V | Cr | Sr | Rb | Ba | δ18O | δ2H | d-Excess 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
μS/cm | mg/L | μg/L | ‰ | ||||||||||||||||||
Natural mineral water (NMW, n = 22) | |||||||||||||||||||||
min | 6.8 | 91.0 | 10.9 | 1.20 | 2.04 | 0.65 | 2.16 | 0.11 | 3.02 | 38.4 | 80.6 | 0.78 | 1.42 | 0.01 | 0.02 | 57.6 | 0.02 | 0.06 | −9.7 | −64 | 10.6 |
max | 8.6 | 361 | 51.1 | 15.3 | 14.7 | 1.93 | 11.6 | 10.2 | 29.3 | 204 | 312 | 27.9 | 378 | 2.26 | 0.67 | 1016 | 6.27 | 75.5 | −8.1 | −53 | 13.4 |
avg. | 7.8 | 157 | 20.2 | 3.34 | 6.86 | 1.05 | 5.34 | 4.99 | 8.58 | 75.9 | 132 | 8.06 | 25.6 | 0.67 | 0.26 | 170 | 1.58 | 10.0 | −8.8 | −59 | 11.9 |
std. | 0.5 | 77.0 | 10.2 | 3.65 | 3.24 | 0.32 | 3.32 | 3.26 | 6.28 | 44.1 | 65.1 | 7.03 | 91.0 | 0.67 | 0.23 | 198 | 1.62 | 19.3 | 0.4 | 4 | 0.8 |
Functional water (FW, n = 23) | |||||||||||||||||||||
min | 6.5 | 9.00 | n.d. | n.d. | 0.68 | 0.32 | 0.16 | n.d. | n.d. | 3.78 | 5.26 | 0.06 | 0.95 | 0.01 | 0.01 | 1.40 | 0.04 | 0.04 | −9.6 | −66 | 7.6 |
max | 8.4 | 668 | 76.5 | 27.2 | 61.3 | 17.3 | 54.0 | 39.9 | 103 | 287 | 519 | 238 | 150 | 3.19 | 1.27 | 10,186 | 4.93 | 177 | −7.3 | −50 | 12.5 |
avg. | 7.9 | 247 | 25.6 | 9.70 | 16.4 | 2.41 | 9.04 | 5.13 | 17.1 | 128 | 219 | 22.3 | 32.9 | 0.67 | 0.23 | 1720 | 1.35 | 37.4 | −8.8 | −60 | 10.1 |
std. | 0.5 | 166 | 16.8 | 8.59 | 15.2 | 4.01 | 11.5 | 9.48 | 20.8 | 86.6 | 144 | 48.2 | 44.0 | 0.86 | 0.36 | 3120 | 1.34 | 47.1 | 0.6 | 4 | 1.6 |
Desalinated seawater (DSW, n = 8) | |||||||||||||||||||||
min | 5.9 | 274 | 5.5 | 17.3 | 8.28 | 5.07 | 6.74 | n.d. | 2.99 | 2.20 | 72.5 | 3.13 | 302 | 0.01 | 0.01 | 7.29 | 1.76 | 0.02 | −0.4 | −1 | 0.6 |
max | 6.5 | 668 | 14.7 | 50.4 | 16.4 | 10.3 | 155 | 0.10 | 60.2 | 4.52 | 308 | 9.68 | 513 | 0.05 | 0.07 | 275 | 5.10 | 0.16 | 0.0 | 1 | 2.0 |
avg. | 6.2 | 474 | 10.5 | 33.3 | 13.0 | 7.83 | 91.7 | 0.02 | 42.2 | 3.02 | 202 | 6.28 | 388 | 0.02 | 0.04 | 119 | 3.40 | 0.07 | −0.1 | 0 | 1.1 |
std. | 0.2 | 114 | 2.95 | 9.33 | 2.85 | 1.60 | 44.8 | 0.03 | 19.2 | 0.85 | 75.0 | 1.85 | 74.6 | 0.02 | 0.02 | 106 | 0.96 | 0.04 | 0.1 | 1 | 0.5 |
Carbonated water (CW, n = 7) | |||||||||||||||||||||
min | 4.0 | 109 | 5.72 | 0.95 | 5.11 | 1.13 | 7.57 | 1.78 | 1.69 | n.a. | 33.2 | 0.58 | 2.11 | 0.04 | 0.01 | 53.7 | 0.13 | 1.73 | −9.6 | −64 | 7.1 |
max | 5.2 | 338 | 38.8 | 6.99 | 28.3 | 2.61 | 27.5 | 20.4 | 31.7 | 108 | 241 | 20.6 | 18.4 | 2.59 | 0.57 | 264 | 1.64 | 17.7 | −6.9 | −46 | 13.0 |
avg. | 4.5 | 214 | 21.6 | 3.52 | 14.3 | 1.73 | 15.4 | 8.04 | 14.7 | 36.7 | 122 | 8.34 | 7.51 | 0.55 | 0.19 | 159 | 0.92 | 8.56 | −8.3 | −57 | 9.4 |
std. | 0.4 | 86.6 | 11.8 | 2.18 | 9.17 | 0.61 | 7.77 | 6.33 | 11.3 | 44.7 | 81.0 | 7.20 | 7.69 | 0.91 | 0.19 | 80.5 | 0.55 | 5.19 | 1.0 | 7 | 2.1 |
Sample | Ca | Mg | Na | K | Ca | Mg | Na | K |
---|---|---|---|---|---|---|---|---|
Measured concentration (mg/L) | Concentration on the bottle label (mg/L) | |||||||
Natural mineral water (NMW) | ||||||||
NMW-1 | 39.3 | 15.3 | 14.7 | 1.60 | 36.0~41.0 (38.5) | 15.0~17.0 (16.0) | 11.0~13.0 (12.0) | 1.00~1.20 (1.10) |
NMW-2 | 12.9 | 1.21 | 5.86 | 0.65 | 7.60~12.2 (9.90) | 1.20~1.30 (1.25) | 5.10~6.70 (5.90) | 0.40~0.70 (0.55) |
NMW-3 | 13.4 | 1.23 | 5.97 | 0.68 | 8.10~13.5 (10.8) | 1.10~1.30 (1.20) | 4.70~6.70 (5.70) | 0.40~0.70 (0.55) |
NMW-4 | 24.3 | 3.26 | 12.8 | 0.91 | 8.40~25.6 (17.0) | 2.20~3.90 (3.05) | 7.10~14.6 (10.9) | 0.60~1.10 (0.85) |
NMW-5 | 17.5 | 2.07 | 4.97 | 1.27 | 13.5~19.9 (16.7) | 1.56~2.18 (1.87) | 4.14~5.40 (4.77) | 0.98~1.18 (1.08) |
NMW-6 | 10.9 | 1.23 | 4.73 | 1.14 | 8.70~8.90 (8.80) | 1.10~1.20 (1.15) | 4.70~4.80 (4.75) | 0.70~0.80 (0.75) |
NMW-7 | 19.5 | 1.64 | 10.7 | 0.84 | 19.8~21.6 (20.7) | 1.50~1.70 (1.60) | 7.10~8.40 (7.75) | 0.60~0.70 (0.65) |
NMW-8 | 16.6 | 6.39 | 2.04 | 0.96 | 13.9~14.7 (14.3) | 5.30~5.80 (5.55) | 1.60~3.00 (2.30) | 0.70~0.80 (0.75) |
NMW-9 | 17.4 | 2.03 | 4.88 | 1.25 | 13.0~20.0 (16.5) | 1.40~2.30 (1.85) | 3.90~5.50 (4.70) | 0.90~1.20 (1.05) |
NMW-10 | 25.4 | 3.31 | 4.48 | 1.39 | 27.4~30.5 (29.0) | 3.50~3.80 (3.65) | 4.70~5.20 (4.95) | 1.30~2.00 (1.65) |
NMW-11 | 51.1 | 9.96 | 14.0 | 1.93 | 8.50~44.8 (26.7) | 4.10~14.1 (9.10) | 1.80~12.6 (7.20) | 1.20~3.50 (2.35) |
NMW-12 | 12.7 | 1.21 | 5.80 | 0.65 | 8.10~13.5 (10.8) | 1.10~1.30 (1.20) | 4.70~6.70 (5.70) | 0.40~0.70 (0.55) |
NMW-13 | 12.7 | 1.20 | 5.90 | 0.65 | 8.10~13.5 (10.8) | 1.10~1.30 (1.20) | 4.70~6.70 (5.70) | 0.40~0.70 (0.55) |
NMW-14 | 17.1 | 2.05 | 4.94 | 1.30 | 13.5~19.9 (16.7) | 1.56~2.18 (1.87) | 4.14~5.40 (4.77) | 0.98~1.18 (1.08) |
NMW-15 | 21.1 | 1.69 | 6.55 | 0.88 | 22.6~23.2 (22.9) | 1.52~1.55 (1.54) | 6.05~6.09 (6.07) | 0.65~0.73 (0.69) |
NMW-16 | 19.4 | 1.70 | 6.18 | 0.91 | 22.6~23.2 (22.9) | 1.52~1.55 (1.54) | 6.05~6.09 (6.07) | 0.65~0.73 (0.69) |
NMW-17 | 14.4 | 1.41 | 5.18 | 1.12 | 9.00~16.0 (12.5) | 0.70~1.50 (1.10) | 4.00~7.00 (5.50) | 0.80~1.50 (1.15) |
NMW-18 | 14.0 | 1.37 | 5.13 | 1.12 | 9.00~16.0 (12.5) | 0.70~1.50 (1.10) | 4.00~7.00 (5.50) | 0.80~1.50 (1.15) |
NMW-19 | 14.8 | 2.06 | 7.64 | 0.73 | 11.0~16.6 (13.8) | 1.40~2.20 (1.80) | 5.30~8.10 (6.70) | 0.30~0.60 (0.45) |
NMW-20 | 20.5 | 2.78 | 6.56 | 0.90 | 16.8~20.1 (18.5) | 2.38~2.54 (2.46) | 6.47~8.96 (7.72) | 0.66~0.99 (0.83) |
NMW-21 | 11.7 | 1.33 | 5.44 | 1.10 | 8.70~8.90 (8.80) | 1.10~1.20 (1.15) | 4.70~4.80 (4.75) | 0.70~0.80 (0.75) |
NMW-22 | 38.0 | 9.15 | 6.51 | 1.02 | 30.4~38.7 (34.6) | 7.20~9.20 (8.20) | 6.10~7.20 (6.65) | 0.80~0.90 (0.85) |
Desalinated seawater (DSW) | ||||||||
DSW-1 | 10.5 | 31.5 | 12.0 | 7.60 | 10.0 | 30.0 | 8.00 | 10.0 |
DSW-2 | 5.46 | 17.3 | 8.28 | 5.07 | 5.50 | 16.4 | 12.0 | 5.50 |
DSW-3 | 9.20 | 31.3 | 16.4 | 7.47 | 9.00 | 27.5 | 10.0 | 9.00 |
DSW-4 | 11.1 | 34.2 | 15.5 | 8.20 | 11.0 | 32.8 | 19.0 | 11.0 |
DSW-5 | 9.45 | 28.9 | 11.8 | 7.10 | 10.0 | 30.0 | 10.5 | 10.0 |
DSW-6 | 14.2 | 39.1 | 15.3 | 9.53 | 14.0 | 40.5 | 14.5 | 14.0 |
DSW-7 | 9.41 | 33.2 | 10.5 | 7.31 | 9.00 | 27.5 | 10.0 | 9.00 |
DSW-8 | 14.7 | 50.4 | 14.6 | 10.3 | 16.5 | 48.0 | 10.0 | 15.0 |
Sample | Li | B | V | Cr | Rb | Ba | Ga |
---|---|---|---|---|---|---|---|
(μg/L) | |||||||
Granitic rocks | |||||||
NMW-1 | 8.52 | 9.01 | 0.27 | 0.02 | 2.77 | 75.5 | 0.01 |
NMW-4 | 27.9 | 5.76 | 0.25 | 0.07 | 1.13 | 1.99 | 0.15 |
NMW-5 | 2.39 | 2.61 | 2.26 | 0.39 | 0.41 | 1.19 | 0.03 |
NMW-6 | 1.99 | n.d. | 1.13 | 0.36 | 0.48 | 0.47 | 0.06 |
NMW-8 | 1.62 | 1.52 | 0.34 | 0.67 | 1.42 | 55.2 | 0.00 |
NMW-9 | 2.27 | n.d. | 2.17 | 0.39 | 0.24 | 1.10 | 0.10 |
NMW-10 | 0.78 | 3.06 | 0.67 | 0.40 | 0.75 | 4.32 | 0.02 |
NMW-11 | 19.2 | 2.61 | 0.62 | 0.05 | 4.37 | 5.78 | 0.42 |
NMW-14 | 5.33 | 378 | 0.01 | 0.04 | 3.11 | 0.06 | n.d. |
NMW-15 | 7.98 | 4.47 | 0.61 | 0.13 | 1.22 | 10.7 | 0.80 |
NMW-16 | 7.29 | 1.78 | 0.57 | 0.14 | 1.20 | 9.84 | 0.76 |
NMW-17 | 2.37 | n.d. | 1.53 | 0.30 | 0.93 | 1.01 | 0.12 |
NMW-18 | 2.38 | 3.33 | 1.64 | 0.32 | 0.85 | 0.87 | 0.04 |
NMW-19 | 8.19 | 3.07 | 0.42 | 0.59 | 0.27 | 0.97 | 0.02 |
NMW-20 | 7.86 | 9.29 | 0.84 | 0.63 | 0.71 | 28.7 | 2.18 |
NMW-21 | 1.70 | 1.95 | 0.76 | 0.21 | 0.24 | 0.49 | 0.01 |
CW-1 | 20.6 | 18.4 | 2.59 | 0.27 | 1.28 | 10.8 | 0.41 |
CW-2 | 6.67 | 2.11 | 0.07 | 0.02 | 0.30 | 1.73 | 0.01 |
CW-4 | 11.5 | 2.17 | 0.43 | 0.20 | 0.13 | 3.49 | n.d. |
CW-5 | 13.0 | n.d. | 0.26 | 0.15 | 0.86 | 7.98 | n.d. |
CW-6 | 5.30 | n.d. | 0.30 | 0.10 | 0.90 | 8.80 | 0.01 |
CW-7 | 0.58 | n.d. | 0.04 | 0.01 | 1.34 | 17.7 | 0.01 |
min | 0.58 | 1.52 | 0.01 | 0.01 | 0.13 | 0.06 | 0.00 |
max | 27.9 | 378 | 2.59 | 0.67 | 4.37 | 75.5 | 2.18 |
avg. | 7.52 | 28.1 | 0.81 | 0.25 | 1.13 | 11.3 | 0.27 |
std. | 7.18 | 93.5 | 0.76 | 0.20 | 1.04 | 19.1 | 0.52 |
Metamorphic rocks | |||||||
NMW-2 | 13.0 | 2.40 | 0.12 | 0.02 | 0.42 | 0.55 | 0.01 |
NMW-3 | 14.3 | n.d. | 0.03 | 0.03 | 0.51 | 0.60 | 0.06 |
NMW-7 | 11.6 | 1.75 | 0.15 | 0.11 | 3.39 | 7.02 | 0.61 |
NMW-12 | 14.4 | n.d. | 0.17 | 0.05 | 0.46 | 0.55 | 0.06 |
NMW-13 | 14.8 | 2.33 | 0.16 | 0.02 | 0.46 | 0.77 | 0.02 |
min | 11.6 | 1.75 | 0.03 | 0.02 | 0.42 | 0.55 | 0.01 |
max | 14.8 | 2.40 | 0.17 | 0.11 | 3.39 | 7.02 | 0.61 |
avg. | 13.6 | 2.16 | 0.13 | 0.05 | 1.05 | 1.90 | 0.15 |
std. | 1.31 | 0.36 | 0.06 | 0.04 | 1.31 | 2.87 | 0.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, W.-J.; Ryu, J.-S.; Shin, H.S.; Jung, Y.-Y.; Ko, K.-S.; Lee, K.-S. Major and Trace Element Geochemistry of Korean Bottled Waters. Water 2020, 12, 2585. https://doi.org/10.3390/w12092585
Shin W-J, Ryu J-S, Shin HS, Jung Y-Y, Ko K-S, Lee K-S. Major and Trace Element Geochemistry of Korean Bottled Waters. Water. 2020; 12(9):2585. https://doi.org/10.3390/w12092585
Chicago/Turabian StyleShin, Woo-Jin, Jong-Sik Ryu, Hyung Seon Shin, Youn-Young Jung, Kyung-Seok Ko, and Kwang-Sik Lee. 2020. "Major and Trace Element Geochemistry of Korean Bottled Waters" Water 12, no. 9: 2585. https://doi.org/10.3390/w12092585
APA StyleShin, W. -J., Ryu, J. -S., Shin, H. S., Jung, Y. -Y., Ko, K. -S., & Lee, K. -S. (2020). Major and Trace Element Geochemistry of Korean Bottled Waters. Water, 12(9), 2585. https://doi.org/10.3390/w12092585