COVID-19 Pandemic Consequences on Coastal Water Quality Using WST Sentinel-3 Data: Case of Tangier, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Study Procedure
2.2.1. Water Surface Temperature Data
2.2.2. Visual Analysis
2.2.3. Coastal Water Quality Estimation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Henrickson, S.E.; Wong, T.; Allen, P.; Ford, T.; Epstein, P.R. Marine swimming-related illness: Implications for monitoring and environmental policy. Environ. Health Perspect. 2001, 109, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Sündermann, J. Survey: Sources, paths and effects of marine pollution. In Pollution of the Sea—Prevention and Compensation; Springer: New York, NY, USA, 2007; pp. 7–14. [Google Scholar]
- Craig-Smith, S.J.; Tapper, R.; Font, X. The coastal and marine environment. In Tourism and Global Environmental Change; Routledge: London, UK, 2006; pp. 121–141. [Google Scholar]
- Cherif, E.K.; Salmoun, F.; Mesas-Carrascosa, F.J. Determination of Bathing Water Quality Using Thermal Images Landsat 8 on the West Coast of Tangier: Preliminary Results. Remote Sens. 2019, 11, 972. [Google Scholar] [CrossRef] [Green Version]
- Cherif, E.K.; Salmoun, F.; El Yemlahi, A.; Magalhaes, J.M. Monitoring Tangier (Morocco) coastal waters for As, Fe and P concentrations using ESA Sentinels-2 and 3 data: An exploratory study. Reg. Stud. Mar. Sci. 2019, 32, 100882. [Google Scholar] [CrossRef]
- Cherif, E.K.; Salmoun, F. Diagnostic of the environmental situation of the west coast of Tangier. J. Mater. Environ. Sci. 2018, 8, 631–640. [Google Scholar]
- Cherif, E.K.; Salmoun, F.; Nouayti, N. Sources of Bathing Water Pollution in the West Coast of Tangier, Morocco: Effects of Industrial Zones. Multidiscip. Digit. Publ. Inst. Proc. 2019, 16, 30. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.; Benveniste, J.; Champollion, N.; Le Cozannet, G.; Woodworth, P.; Ablain, M.; Becker, M.; Ciccarelli, S.; Jevrejeva, S.; Leornardi, N.; et al. Monitoring the evolution of coastal zones under various forcing factors using space-based observing systems. In Proceedings of the Regional Sea Level Changes and Coastal Impacts, New York, NY, USA, 10–14 July 2017. [Google Scholar]
- Chapman, D.V.; World Health Organization. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; CRC PRESS: Boca Raton, FL, USA, 1996. [Google Scholar]
- Callahan, K.M.; Taylor, D.J.; Sobsey, M.D. Comparative survival of hepatitis A virus, poliovirus and indicator viruses in geographically diverse seawaters. Water Sci. Technol. 1995, 31, 189–193. [Google Scholar] [CrossRef]
- Craig, D.L.; Fallowfield, H.J.; Cromar, N.J. Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. J. Appl. Microbiol. 2004, 96, 922–930. [Google Scholar] [CrossRef]
- Mallin, M.A.; Williams, K.E.; Esham, E.C.; Lowe, R.P. Effect of Human Development on Bacteriological Water Quality in Coastal Watersheds. Ecol. Appl. 2000, 10, 1047–1056. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- WHO. Critical Preparedness, Readiness and Response Actions for COVID-19: Interim Guidance, 22 March 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- WHO. Novel Coronavirus (VoCn-2019): Situation Report 3; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, S.; Hu, J.; Li, Z.; Zheng, X.; Cao, Y.; Xu, G.; Yan, M.; Wu, Y. On-road emission measurements of reactive nitrogen compounds from heavy-duty diesel trucks in China. Environ. Pollut. 2020, 2020, 114280. [Google Scholar] [CrossRef] [PubMed]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.P.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Environ. 2020, 2020, 139179. [Google Scholar] [CrossRef] [PubMed]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 2020, 139086. [Google Scholar] [CrossRef]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 2020, 139087. [Google Scholar] [CrossRef]
- Shrestha, A.M.; Shrestha, U.B.; Sharma, R.; Bhattarai, S.; Tran, H.N.T.; Rupakheti, M. Lockdown Caused by COVID-19 Pandemic Reduces Air Pollution in Cities Worldwide. 2020. Available online: https://eartharxiv.org/edt4j/ (accessed on 30 April 2020).
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 2020, 138540. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 2020, 139282. [Google Scholar] [CrossRef]
- Lal, P.; Kumar, A.; Kumar, S.; Kumari, S.; Saikia, P.; Dayanandan, A.; Adhikari, D.; Khan, M.L. The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment. Sci. Total Environ. 2020, 2020, 139297. [Google Scholar] [CrossRef]
- ESA Coronavirus: Nitrogen Dioxide Emissions drop Over Italy. Available online: https://www.esa.int/ESA_Multimedia/Videos/2020/03/Coronavirus_nitrogen_dioxide_emissions_drop_over_Italy (accessed on 26 May 2020).
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [Green Version]
- UNDP, UNECA and World BANK. Social & Economic Impact of the COVID 19 Crisis on Morocco. Recherche Google. 2020. Available online: http://pubdocs.worldbank.org/en/852971598449488981/ENG-The-Social-and-Economic-Impact-of-the-Covid-19-Crisis-in-Morocco.pdf (accessed on 4 June 2020).
- Hahn, T.; Auktor, G.V. The Effectiveness of Morocco’s Industrial Policy in Promoting a National Automotive Industry; Discussion Paper; Deutsches Institut für Entwicklungspolitik (DIE): Bonn, Germany, 2017. [Google Scholar]
- Sabri, H.; Cherifi, O.; Maarouf, A.; Cheggour, M.; Bertrand, M.; Mandi, L. Wastewater impact on macroalgae biodiversity in Essaouira coast (Morocco). J. Mater. Environ. Sci. 2017, 8, 862. [Google Scholar]
- Chaouay, A.; Bazzi, L.; Hilali, M.; Alla, A.A.; El Mouaden, K. Study of bacterial contamination of the Bay of Agadir Impact on the resistance of copper’s corrosion. J. Mater. Environ. Sci. 2014, 5, 2472–2477. [Google Scholar]
- Mejjad, N.; Laissaoui, A.; El-Hammoumi, O.; Fekri, A.; Amsil, H.; El-Yahyaoui, A.; Benkdad, A. Geochemical, radiometric, and environmental approaches for the assessment of the intensity and chronology of metal contamination in the sediment cores from Oualidia lagoon (Morocco). Environ. Sci. Pollut. Res. 2018, 25, 22872–22888. [Google Scholar] [CrossRef]
- Er-Raioui, H.; Khannous, S.; Cheihk, M.; Ould, M.; Mhamada, M.; Bouzid, S. The Moroccan Mediterranean coastline: A potential threatened by the urban discharges. Open Environ. Pollut. Toxicol. J. 2012, 3, 23–36. [Google Scholar] [CrossRef]
- Cherif, E.K.; Salmoun, F. Contribution of remote sensing and bacteriological analysis for the quality of bathing waters on the west coast of Tangier. Coast. Marit. Mediterr. Conf. 2017, 4, 105–1010. [Google Scholar]
- Marsalek, J.; Rochfort, Q. Urban wet-weather flows: Sources of fecal contamination impacting on recreational waters and threatening drinking-water sources. J. Toxicol. Environ. Health A 2004, 67, 1765–1777. [Google Scholar] [CrossRef]
- Sauer, E.P.; VandeWalle, J.L.; Bootsma, M.J.; McLellan, S.L. Detection of the human specific Bacteroides genetic marker provides evidence of widespread sewage contamination of stormwater in the urban environment. Water Res. 2011, 45, 4081–4091. [Google Scholar] [CrossRef]
- Molina, M.; Hunter, S.; Cyterski, M.; Peed, L.A.; Kelty, C.A.; Sivaganesan, M.; Mooney, T.; Prieto, L.; Shanks, O.C. Factors affecting the presence of human-associated and fecal indicator real-time quantitative PCR genetic markers in urban-impacted recreational beaches. Water Res. 2014, 64, 196–208. [Google Scholar] [CrossRef]
- Aouarram, A.; Galindo, M.D.; El Mai, H.; Vicente, J.J.; Garcia-Vargas, M.; Stitou, M.; El Yousfi, F.; Ammari, M.; Ben Allal, L.; Granado, M.D. Distribution and source of trace metals in coastal water of the bay of Tangier (north west Morocco). Fresenius Environ. Bull. 2008, 17, 1688–1696. [Google Scholar]
- Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 2011, 166, 36–59. [Google Scholar] [CrossRef]
- IMANOR. Standards for Monitoring Bathing Water Quality; IMANOR: Rabat, Morocco, 1998. [Google Scholar]
- Peng, F.; Deng, X. Validation of Sentinel-3A SAR mode sea level anomalies around the Australian coastal region. Remote Sens. Environ. 2020, 237, 111548. [Google Scholar] [CrossRef]
- Arabi, B.; Salama, M.S.; Pitarch, J.; Verhoef, W. Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas. Remote Sens. Environ. 2020, 239, 111632. [Google Scholar] [CrossRef]
- Xu, L.; Wang, T.; Wang, J.; Lu, A. Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China. Chemosphere 2017, 173, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ministry of the Environment La Surveillance de la Qualité des Eaux de Baignade des Plages du Royaume-Rapport National. 2019. Available online: http://www.environnement.gov.ma/fr/zones-cotieres?id=222 (accessed on 29 June 2020).
- Fisher, J.I.; Mustard, J.F. High spatial resolution sea surface climatology from Landsat thermal infrared data. Remote Sens. Environ. 2004, 90, 293–307. [Google Scholar] [CrossRef]
- El Attiffi El Ouadrassi, A. La Qualité Microbiologique des Eaux de Baignade. Ph.D. Thesis, University Med V, Rabat, Morocco, 2011. [Google Scholar]
- Dahiya, S.; Kaur, A. Assessment of physico-chemical characteristics of underground water in rural area of Tosham sub-division Bhiwani district, Haryana. J. Environ. Pollut. 1999, 6, 281–288. [Google Scholar]
- Schernewski, G.; Fischer, E.; Huttula, T.; Jost, G.; Ras, M. Simulation tools to support bathing water quality management: Escherichia coli bacteria in a Baltic lagoon. J. Coast. Conserv. 2012, 16, 473–488. [Google Scholar] [CrossRef]
- Rodier, J.; Legube, B.; Merlet, N.; Brunet, R. L’analyse de L’eau-9e éd.: Eaux Naturelles, Eaux Résiduaires, Eau de Mer; Dunod: Paris, France, 2009. [Google Scholar]
- Choo-Kun, M. Integration of Sludge Anaerobic Digestion in an Alternative Wastewater Treatment Line Based on the A/B Process: Towards the Energy Positive Wastewater Treatment Plant. Ph.D. Thesis, INSA de Lyon, Villeurbanne, France, 2015. [Google Scholar]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 2020, 138915. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 2020, 138813. [Google Scholar] [CrossRef]
- Dutheil, F.; Baker, J.S.; Navel, V. COVID-19 as a factor influencing air pollution? Environ. Pollut. Barking Essex 2020, 2020, 114466. [Google Scholar] [CrossRef]
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020, 2020, 138870. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 2020, 139052. [Google Scholar] [CrossRef]
- Yunus, A.P.; Masago, Y.; Hijioka, Y. COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci. Total Environ. 2020, 2020, 139012. [Google Scholar] [CrossRef]
- Selvam, S.; Jesuraja, K.; Venkatramanan, S.; Chung, S.Y.; Roy, P.D.; Muthukumar, P.; Kumar, M. Imprints of pandemic lockdown on subsurface water quality in the coastal industrial city of Tuticorin, south India: A revival perspective. Sci. Total Environ. 2020, 2020, 139848. [Google Scholar] [CrossRef]
- Ormaza-González, F.; Castro-Rodas, D. COVID-19 Impacts on Beaches and Coastal Water Pollution: Management Proposals Post-Pandemic. 2020. Available online: https://www.preprints.org/manuscript/202006.0186/v1 (accessed on 9 September 2020).
- Garg, V.; Aggarwal, S.P.; Chauhan, P. Changes in turbidity along Ganga River using Sentinel-2 satellite data during lockdown associated with COVID-19. Geomat. Nat. Hazards Risk 2020, 11, 1175–1195. [Google Scholar] [CrossRef]
- Clifford, C. The Water in Venice, Italy’s Canals is Running Clear Amid the COVID-19 Lockdown—Take a Look. Available online: https://www.cnbc.com/2020/03/18/photos-water-in-venice-italys-canals-clear-amid-covid-19-lockdown.html (accessed on 2 September 2020).
- Häder, D.-P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef]
Year | Images ID |
---|---|
2019 | S3A_SL_2_WST____20190401T104213 |
S3A_SL_2_WST____20190404T110440 | |
S3A_SL_2_WST____20190408T110056 | |
S3A_SL_2_WST____20190410T100835 | |
S3B_SL_2_WST____20190411T104355 | |
S3A_SL_2_WST____20190414T100451 | |
S3B_SL_2_WST____20190419T103626 | |
S3A_SL_2_WST____20190420T104945 | |
S3A_SL_2_WST____20190424T104601 | |
S3B_SL_2_WST____20190426T105508 | |
2020 | S3B_SL_2_WST____20200401T101356 |
S3B_SL_2_WST____20200405T101012 | |
S3B_SL_2_WST____20200407T105849 | |
S3A_SL_2_WST____20200410T101952 | |
S3B_SL_2_WST____20200411T105505 | |
S3A_SL_2_WST____20200414T101608 | |
S3A_SL_2_WST____20200418T101224 | |
S3B_SL_2_WST____20200427T104010 |
Quality Classes | A (Good Quality) | B (Medium Quality) | C (Temporarily Polluted) | D (Poor Quality) |
---|---|---|---|---|
Indicator | ||||
E. coli (UFC */100 mL) | ≤150 | ≤250 | ≤500 | >500 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherif, E.K.; Vodopivec, M.; Mejjad, N.; Esteves da Silva, J.C.G.; Simonovič, S.; Boulaassal, H. COVID-19 Pandemic Consequences on Coastal Water Quality Using WST Sentinel-3 Data: Case of Tangier, Morocco. Water 2020, 12, 2638. https://doi.org/10.3390/w12092638
Cherif EK, Vodopivec M, Mejjad N, Esteves da Silva JCG, Simonovič S, Boulaassal H. COVID-19 Pandemic Consequences on Coastal Water Quality Using WST Sentinel-3 Data: Case of Tangier, Morocco. Water. 2020; 12(9):2638. https://doi.org/10.3390/w12092638
Chicago/Turabian StyleCherif, El Khalil, Martin Vodopivec, Nezha Mejjad, Joaquim C.G. Esteves da Silva, Simona Simonovič, and Hakim Boulaassal. 2020. "COVID-19 Pandemic Consequences on Coastal Water Quality Using WST Sentinel-3 Data: Case of Tangier, Morocco" Water 12, no. 9: 2638. https://doi.org/10.3390/w12092638
APA StyleCherif, E. K., Vodopivec, M., Mejjad, N., Esteves da Silva, J. C. G., Simonovič, S., & Boulaassal, H. (2020). COVID-19 Pandemic Consequences on Coastal Water Quality Using WST Sentinel-3 Data: Case of Tangier, Morocco. Water, 12(9), 2638. https://doi.org/10.3390/w12092638