Dynamics and Model Research on the Electrosorption by Activated Carbon Fiber Electrodes
Abstract
:1. Introduction
2. Classic Electric Double Layer Models and m-D Model
2.1. Classic Electric Double Layer Models
2.2. Modified Donnan Model
3. Experimental and Analysis of Electrosorption Dynamics
3.1. Characteristics of ACF Electrodes
3.2. CDI System
3.3. Experimental Method
3.4. Analysis and Discussion of Electrosorption Dynamics
4. Establishment and Verification of the Electrosorption Dynamic Model
4.1. Dynamic Model Establishment
4.2. Model Fitting Analysis and Verification
5. Discussions
6. Conclusions
- (1)
- Quasi-first-order and quasi-second-order dynamic equations were used to fit the curve of the ACF electrosorption adsorption capacity with time under different concentrations. We found that the electrosorption process is mainly physical adsorption, almost without Redox reaction presence related to the Faraday capacitor. As the concentration increases, the quasi-first-order rate constant gradually increases. It can be seen that the greater the concentration of the injection solution, the greater the electrosorption rate.
- (2)
- The intra-diffusion equation was used to study the ion transfer resistance. The intra-diffusion step is one of the control steps of the electrosorption process through the analysis of the fitting curve. In the dynamic modeling process, the total resistance cannot be simply described as the macroscopic transmission resistance across the electrode.
- (3)
- Under the condition of accurately considering the dynamic mechanism of electrosorption, the electrosorption dynamic model in the batch mode method was obtained based on the macroscopic porous electrode theory and the modified Donnan model theory. The feasibility and accuracy of the model were verified by fitting experimental data.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, R.; van Soestbergen, M.; Rijnaarts, H.H.; van der Wal, A.; Bazant, M.Z.; Biesheuvel, P.M. Time-dependent ion selectivity in capacitive charging of porous electrodes. J. Colloid Interface Sci. 2012, 384, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Hasseler, T.D.; Ramachandran, A.; Tarpeh, W.A.; Stadermann, M.; Santiago, J.G. Process design tools and techno-economic analysis for capacitive deionization. Water Res. 2020, 183, 116034. [Google Scholar] [CrossRef] [PubMed]
- Raluy, R.G.; Schwantes, R.; Subiela, V.J.; Peate, B.; Betancort, J.R.J.D. Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain). Desalination 2012, 290, 1–13. [Google Scholar] [CrossRef]
- Li, H.; Zou, L.J.D. Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination 2011, 275, 62–66. [Google Scholar] [CrossRef]
- Lee, H.J.; Sarfert, F.; Strathmann, H.; Moon, S.H. Designing of an Electrodialysis desalination plant. Desalination 2002, 142, 267–286. [Google Scholar]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P.J.W.R. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Chen, Z.; Song, C.; Sun, X.; Guo, H.; Zhu, G.J.D. Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes. Desalination 2011, 267, 239–243. [Google Scholar] [CrossRef]
- Arnold, B.B.; Murphy, G.W. Studies on the electrochemistry of carbon and chemically-modified carbon surfaces. J. Phys. Chem. 1961, 65, 135–138. [Google Scholar] [CrossRef]
- Chang, L.M.; Duan, X.Y.; Liu, W.J.D. Preparation and electrosorption desalination performance of activated carbon electrode with titania. Desalination 2011, 270, 285–290. [Google Scholar] [CrossRef]
- Lim, J.A.; Park, N.S.; Park, J.S.; Choi, J.H.J.D. Fabrication and characterization of a porous carbon electrode for desalination of brackish water. Desalination 2009, 238, 37–42. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, S.; Chinwangso, P.; Advincula, R.C.; Lee, T.R. Electric Potential Stability and Ionic Permeability of SAMs on Gold Derived from Bidentate and Tridentate Chelating Alkanethiols. J. Phys. Chem. C 2014, 113, 3717–3725. [Google Scholar] [CrossRef]
- Park, K.K.; Lee, J.B.; Park, P.Y.; Yoon, S.W.; Moon, J.S.; Eum, H.M.; Lee, C.W. Development of a carbon sheet electrode for electrosorption desalination. Desalination 2007, 206, 86–91. [Google Scholar] [CrossRef]
- Kinraide, T.B. Use of a Gouy-Chapman-Stern model for membrane-surface electrical potential to interpret some features of mineral rhizotoxicity. Plant Physiol. 1994, 106, 1583–1592. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Okubo, M.; Asakura, D.; Saito, T.; Hosono, E.; Saito, Y.; Oh-Ishi, K.; Kudo, T.; Zhou, H. Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. Electrochim. Acta 2012, 63, 139–145. [Google Scholar] [CrossRef]
- Yang, K.-L.; Ying, T.-Y.; Yiacoumi, S.; Tsouris, C.; Vittoratos, E.S. Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model. Langmuir 2001, 17, 1961–1969. [Google Scholar] [CrossRef]
- Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P.M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013, 58, 1388–1442. [Google Scholar] [CrossRef] [Green Version]
- Biesheuvel, P.M.; Porada, S.; Levi, M. Attractive forces in microporous carbon electrodes for capacitive deionization. J. Solid State Electrochem. 2014, 18, 1365–1376. [Google Scholar] [CrossRef] [Green Version]
- Nordstrand, J.; Laxman, K.; Myint, M.T.Z.; Dutta, J. An Easy-to-Use Tool for Modeling the Dynamics of Capacitive Deionization. J. Phys. Chem. A 2019, 123, 6628–6634. [Google Scholar] [CrossRef] [Green Version]
- Dykstra, J.E.; Dijkstra, J.; van der Wal, A.; Hamelers, H.V.M.; Porada, S. On-line method to study dynamics of ion adsorption from mixtures of salts in capacitive deionization. Desalination 2016, 390, 47–52. [Google Scholar] [CrossRef]
- Fulazzaky, M.A. Determining the resistance of mass transfer for adsorption of the surfactants onto granular activated carbons from hydrodynamic column. Chem. Eng. J. 2011, 166, 832–840. [Google Scholar] [CrossRef]
- Biesheuvel, P.M.; Bazant, M.Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys. Rev. E 2010, 81, 031502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazant, M.Z.; Thornton, K.; Ajdari, A. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 2004, 70, 021506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porada, S.; Bryjak, M.; van der Wal, A.; Biesheuvel, P.M. Effect of electrode thickness variation on operation of capacitive deionization. Electrochim. Acta 2012, 75, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Shocron, A.N.; Suss, M.E. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging. J. Phys. 2017, 29, 084003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suss, M.E.; Porada, S.; Sun, X.; Biesheuvel, P.M.; Yoon, J.; Presser, V. Water desalination via capacitive deionization: What is it and what can we expect from it? Energy Environ. Sci. 2015, 8, 2296–2319. [Google Scholar] [CrossRef] [Green Version]
EDL Model | Characteristic Equation | Scope of Application |
---|---|---|
Helmholtz–Perrin model | Suitable for the EDL structure with small total surface charge q or high electrolyte concentration. | |
Gouy–Chapman model | Suitable for low concentration electrolytes, but not accurate enough. | |
Gouy–Chapman–Stern model | Suitable for situations where there is no special adsorption. |
Concentration (mg/L) | Quasi-First-Order | Quasi-Second-Order | Weber–Morris | |||||
---|---|---|---|---|---|---|---|---|
100 | 0.01366 | 0.15724 | 0.97018 | 0.01719 | 9.24178 | 0.99423 | 0.4135 | 0.97552 |
300 | 0.04262 | 0.25256 | 0.92512 | 0.0504 | 5.96585 | 0.8875 | 1.4689 | 0.96226 |
500 | 0.05432 | 0.30579 | 0.99654 | 0.06329 | 6.00808 | 0.98454 | 1.7645 | 0.95526 |
800 | 0.09525 | 0.22942 | 0.98274 | 0.11552 | 2.16278 | 0.96123 | 4.3264 | 0.95935 |
1000 | 0.11693 | 0.3277 | 0.98165 | 0.13328 | 3.44591 | 0.95868 | 5.5119 | 0.9723 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Huang, L.; Xu, Y.; Liu, C.; Wang, F.; Xing, H.; Ma, S. Dynamics and Model Research on the Electrosorption by Activated Carbon Fiber Electrodes. Water 2021, 13, 62. https://doi.org/10.3390/w13010062
Ma L, Huang L, Xu Y, Liu C, Wang F, Xing H, Ma S. Dynamics and Model Research on the Electrosorption by Activated Carbon Fiber Electrodes. Water. 2021; 13(1):62. https://doi.org/10.3390/w13010062
Chicago/Turabian StyleMa, Lan, Luyue Huang, Yongyi Xu, Chang Liu, Feng Wang, Haoruo Xing, and Shuangchen Ma. 2021. "Dynamics and Model Research on the Electrosorption by Activated Carbon Fiber Electrodes" Water 13, no. 1: 62. https://doi.org/10.3390/w13010062
APA StyleMa, L., Huang, L., Xu, Y., Liu, C., Wang, F., Xing, H., & Ma, S. (2021). Dynamics and Model Research on the Electrosorption by Activated Carbon Fiber Electrodes. Water, 13(1), 62. https://doi.org/10.3390/w13010062