Updated Kriging-Assisted Shape Optimization of a Gravity Dam
Abstract
:1. Introduction
2. Methodology
2.1. Formulaiton of the Optimization Problem
2.2. Solution of the Optimizaiton Problem
2.2.1. Genetic Algorithm (GA)
2.2.2. Kriging Surrogate Model (KSM)
- Sampling methods
- 2.
- Constructing the KSM
- 3.
- Accuracy evaluation
2.2.3. Updated Kriging Surrogate Model (UKSM)
2.2.4. Optimization Procedure
- GA–KSM optimization procedure
- 2.
- GA–UKSM optimization procedure
3. Case Study
3.1. Basic Information of the Gravity Dam
3.2. Finite-Element Model of the Gravity Dam
3.3. Parameter Setting
3.4. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paseka, S.; Kapelan, Z.; Marton, D. Multi-objective optimization of resilient design of the multipurpose reservoir in conditions of uncertain climate change. Water 2018, 10, 1110. [Google Scholar] [CrossRef] [Green Version]
- Rita, M.; Fairbairn, E.; Ribeiro, F.; Andrade, H.; Barbosa, H. Optimization of Mass Concrete Construction Using a Twofold Parallel Genetic Algorithm. Appl. Sci. Basel 2018, 8, 399. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.; Lahmer, T. Shape optimization based design of arch-type dams under uncertainties. Eng. Optim. 2018, 50, 1470–1482. [Google Scholar]
- Sukkarak, R.; Jongpradist, P.; Pramthawee, P. A modified valley shape factor for the estimation of rockfill dam settlement. Comput. Geotech. 2019, 108, 244–256. [Google Scholar] [CrossRef]
- Khatibinia, M.; Khosravi, S. A hybrid approach based on an improved gravitational search algorithm and orthogonal crossover for optimal shape design of concrete gravity dams. Appl. Soft Comput. 2014, 16, 223–233. [Google Scholar] [CrossRef]
- Mahani, A.S.; Shojaee, S.; Salajegheh, E.; Khatibinia, M. Hybridizing two-stage meta-heuristic optimization model with weighted least squares support vector machine for optimal shape ofa double-arch dams. Appl. Soft Comput. 2015, 27, 205–218. [Google Scholar] [CrossRef]
- Wang, X.; Yang, K.; Shen, C. Study on MPGA-BP of Gravity Dam Deformation Prediction. Math. Probl. Eng. 2017, 2017. [Google Scholar] [CrossRef]
- Chang, C.-M.; Lin, T.-K.; Chang, C.-W. Applications of neural network models for structural health monitoring based on derived modal properties. Measurement 2018, 129, 457–470. [Google Scholar] [CrossRef]
- Jamli, M.R.; Farid, N.M. The sustainability of neural network applications within finite element analysis in sheet metal forming: A review. Measurement 2019, 138, 446–460. [Google Scholar] [CrossRef]
- Krige, D.G. A statistical approach to some basic mine valuation problems on the witwatersrand. J. S. Afr. Inst. Min. Metall. 1994, 94, 95–111. [Google Scholar]
- Putra, N.K.; Palar, P.S.; Anzai, H.; Shimoyama, K.; Ohta, M. Multiobjective design optimization of stent geometry with wall deformation for triangular and rectangular struts. Med. Biol. Eng. Comput. 2019, 57, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, B.; Teixeira, A.P.; Soares, C.G. Assessment of the efficiency of Kriging surrogate models for structural reliability analysis. Probabilistic Eng. Mech. 2014, 37, 24–34. [Google Scholar] [CrossRef]
- Suprayitno; Yu, J.-C. Evolutionary reliable regional Kriging surrogate for expensive optimization. Eng. Optim. 2019, 51, 247–264. [Google Scholar] [CrossRef]
- Mohammadi-Amin, M.; Entezari, M.M.; Alikhani, A. An efficient surrogate-based framework for aerodynamic database development of manned reentry vehicles. Adv. Space Res. 2018, 62, 997–1014. [Google Scholar] [CrossRef]
- Augspurger, M.; Choi, K.K.; Udaykumar, H.S. Optimizing fin design for a PCM-based thermal storage device using dynamic Kriging. Int. J. Heat Mass Transf. 2018, 121, 290–308. [Google Scholar] [CrossRef]
- Song, C.; Yang, X.; Song, W. Multi-infill strategy for kriging models used in variable fidelity optimization. Chin. J. Aeronaut. 2018, 31, 448–456. [Google Scholar] [CrossRef]
- Suprayitno; Yang, C.-Y.; Yu, J.-C.; Lin, B.-T. Optimum Design of Microridge Deep Drawing Punch Using Regional Kriging Assisted Fuzzy Multiobjective Evolutionary Algorithm. IEEE Access 2018, 6, 63905–63914. [Google Scholar] [CrossRef]
- Salmasi, F. Design of gravity dam by genetic algorithms. Int. J. Civ. Environ. Eng. 2011, 3, 187–192. [Google Scholar]
- Wang, G.G. Adaptive Response Surface Method using inherited Latin Hypercube Design points. J. Mech. Des. 2003, 125, 210–220. [Google Scholar] [CrossRef]
- Lophaven, S.N.; Nielsen, H.B.; Sondergaard, J. Dace. A Matlab Kriging Toolbox; Technical Report No. IMMTR-2002; Technical University of Denmark: Kongens Lyngby, Denmark, 2002; Volume 12. [Google Scholar]
- Han, Z.-H.; Zhang, K.-S. Surrogate-based optimization. In Real-World Applications of Genetic Algorithms; BoD – Books on Demand: Norderstedt, Germany, 2012. [Google Scholar]
- Booker, A.J.; Dennis, J.E.; Frank, P.D.; Serafini, D.B.; Torczon, V.; Trosset, M.W. A rigorous framework for optimization of expensive functions by surrogates. Struct. Optim. 1999, 17, 1–13. [Google Scholar] [CrossRef]
- Jones, D.R. A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 2001, 21, 345–383. [Google Scholar] [CrossRef]
- Sasena, M.J.; Papalambros, P.; Goovaerts, P. Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 2002, 34, 263–278. [Google Scholar] [CrossRef]
- Alembagheri, M.; Ghaemian, M. Incremental dynamic analysis of concrete gravity dams including base and lift joints. Earthq. Eng. Eng. Vib. 2013, 12, 119–134. [Google Scholar] [CrossRef]
- Westergaard, H.M. Water pressures on dams during earthquakes. Trans. ASCE 1933, 95, 418–433. [Google Scholar]
- Akkose, M.; Simsek, E. Non-linear seismic response of concrete gravity dams to near-fault ground motions including dam-water-sediment-foundation interaction. Appl. Math. Model. 2010, 34, 3685–3700. [Google Scholar] [CrossRef]
- Ghaedi, K.; Jameel, M.; Ibrahim, Z.; Khanzaei, P. Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of sizes and shapes of galleries. KSCE J. Civ. Eng. 2016, 20, 261–272. [Google Scholar] [CrossRef]
- Saqib, M.; Ansari, M.I.; Agarwal, P. Effectiveness of ANN for seismic behaviour prediction considering geometric configuration effect in concrete gravity dams. Perspect. Sci. 2016, 8, 432–434. [Google Scholar] [CrossRef] [Green Version]
- Clough, R.W. Reservoir Interaction Effects on the Dynamic Response of Arch Dams; China Water and Power Press: Beijing, China, 1982. [Google Scholar]
Design Variable | Lower Bound | Upper Bound |
---|---|---|
P | 0.32 | 0.66 |
Q | 0.86 | 0.93 |
m1 | 0.10 | 0.20 |
m2 | 0.60 | 0.80 |
Corresponding Area | Dam Body | Dam Foundation |
---|---|---|
Allowable value of static compressive strength (MPa) | 11.17 | 14.91 |
Allowable value of dynamic compressive strength (σ−/MPa) | 14.52 | 19.38 |
Allowable value of dynamic tensile strength (σ+/MPa) | 1.16 | 1.55 |
Static modulus (GPa) | 22.30 | 29.10 |
Dynamic elastic modulus (GPa) | 29.00 | 37.83 |
Density (kg/m3) | 2400 | 2500 |
Optimization Methods | Design Variable | H1(m) | H2(m) | S(m2) | Number of Simulations | |||
---|---|---|---|---|---|---|---|---|
p | q | m1 | m2 | |||||
GA–KSM | 0.395 | 0.872 | 0.195 | 0.682 | 35.25 | 77.82 | 2899.4 | 1700 |
GA–UKSM | 0.396 | 0.872 | 0.186 | 0.680 | 35.34 | 77.82 | 2888.9 | 128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, Y.; Ma, X. Updated Kriging-Assisted Shape Optimization of a Gravity Dam. Water 2021, 13, 87. https://doi.org/10.3390/w13010087
Wang Y, Liu Y, Ma X. Updated Kriging-Assisted Shape Optimization of a Gravity Dam. Water. 2021; 13(1):87. https://doi.org/10.3390/w13010087
Chicago/Turabian StyleWang, Yongqiang, Ye Liu, and Xiaoyi Ma. 2021. "Updated Kriging-Assisted Shape Optimization of a Gravity Dam" Water 13, no. 1: 87. https://doi.org/10.3390/w13010087
APA StyleWang, Y., Liu, Y., & Ma, X. (2021). Updated Kriging-Assisted Shape Optimization of a Gravity Dam. Water, 13(1), 87. https://doi.org/10.3390/w13010087