Gradient Self-Potential Logging in the Rio Grande to Identify Gaining and Losing Reaches across the Mesilla Valley
Abstract
:1. Introduction
2. Description of the Study Area
2.1. Hydrogeology of the Mesilla Basin
2.2. Electric Resistivity of the Mesilla Basin Aquifer
2.3. Groundwater-Surface Water Connectivity in the Mesilla Valley
3. Materials and Methods
3.1. Gradient Self-Potential Logging
3.2. Surface-Water Temperature and Conductivity Logging
4. Results and Discussion
4.1. Comparison of Electric Potential to Streamflow
4.2. Surface-Water Temperature and Specific Conductance Data
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alley, W.M. Five-Year Interim Report of the United States-Mexico Transboundary Aquifer Assessment Program: 2007–2012; U.S. Geological Survey Open-File Report 2013–1059; U.S. Geological Survey: Reston, VA, USA, 2013; pp. 1–31. [CrossRef]
- Teeple, A.P. Geophysics- and Geochemistry-Based Assessment of the Geochemical Characteristics and Groundwater-Flow System of the U.S. Part of the Mesilla Basin/Conejos-Médanos Aquifer System in Doña Ana County, New Mexico, and El Paso County, Texas, 2010–2012; U.S. Geological Survey Scientific Investigations Report 2017-5028; U.S. Geological Survey: Reston, VA, USA, 2017; 183p. [CrossRef]
- Instituto Nacional de Estadística y Geografía. Subprovincias Fisiográficas. 2001. Available online: https://www.inegi.org.mx/temas/fisiografia/#Descargas (accessed on 18 February 2021).
- Fenneman, N.M.; Johnson, D.W. Physiographic Divisions of the Conterminous U.S. U.S. Geological Survey Digital Data. 1946. Available online: https://water.usgs.gov/GIS/metadata/usgswrd/XML/physio.xml (accessed on 18 February 2021).
- Daniel, B. Stephens and Associates, Inc. Evaluation of Rio Grande Salinity, San Marcial, New Mexico to El Paso, Texas. 2010. Available online: http://www.nmenv.state.nm.us/swqb/documents/swqbdocs/LRG/Program/LRG_Salinity_Rpt_6-30-10.pdf (accessed on 18 October 2015).
- El Paso Water Utilities. Water—Water Resources. 2007. Available online: https://www.epwater.org/our_water/water_resources (accessed on 15 August 2014).
- Hawley, J.W.; Kennedy, J.F. Creation of a Digital Hydrogeologic Framework Model of the Mesilla Basin and Southern Jornada del Muerto Basin. New Mexico Water Resources Research Institute Technical Completion Report 332, pp. 1–105. 2004. Available online: https://nmwrri.nmsu.edu/wp-content/uploads/TR/tr332.pdf (accessed on 18 February 2021).
- Hawley, J.W.; Kennedy, J.F.; Ortiz Marquita Carrasco, S. Digital hydrogeologic framework model of the Rincon Valley and adjacent areas of Doña Ana, Sierra and Luna Counties, NM. New Mexico Water Resources Research Institute of New Mexico State University, Addendum to Technical Completion Report 332. 2005. Available online: http://wrri.nmsu.edu/publish/techrpt/tr332/cdrom/addendum.pdf (accessed on 22 October 2009).
- DeCelles, P.G.; Ducea, M.N.; Kapp, P.; Zandt, G. Cyclicity in Cordilleran orogenic systems. Nat. Geosci. 2009, 2, 251–257. [Google Scholar] [CrossRef]
- Hoffer, J.M. Geology of Potrillo Basalt Field, south-central New Mexico. New Mexico Bureau of Geology and Mineral Resources Circular 149, pp. 1–30. 1976. Available online: https://geoinfo.nmt.edu/publications/monographs/circulars/downloads/149/Circular-149.pdf (accessed on 18 February 2021).
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground water and surface water: A single resource. Circular 1998, 1139, 88. [Google Scholar] [CrossRef]
- Ging, P.B.; Humberson, D.G.; Ikard, S.J. Geochemical assessment of the Hueco Bolson, New Mexico and Texas, 2016–2017; U.S. Geological Survey Scientific Investigations Report 2020–5056; U.S. Geological Survey: Reston, VA, USA, 2020; pp. 1–30. [CrossRef]
- Onsager, L. Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 1931, 37, 405–426. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal Relations in Irreversible Processes. II. Phys. Rev. 1931, 38, 2265–2279. [Google Scholar] [CrossRef] [Green Version]
- Sill, W.R. Self-potential modeling from primary flows. Geophysics 1983, 48, 76–86. [Google Scholar] [CrossRef]
- Mitchell, J.K. Conduction phenomena: From theory to geotechnical practice. Géotechnique 1991, 41, 299–340. [Google Scholar] [CrossRef]
- Nyquist, J.E.; Corry, C.E. Self-potential: The ugly duckling of environmental geophysics. Lead. Edge 2002, 21, 446–451. [Google Scholar] [CrossRef]
- Naudet, V. A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Atekwana, E.A.; Slater, L.D. Biogeophysics: A new frontier in Earth science research. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Revil, A.; Mendonca, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.J. Understanding biogeobatteries: Where geophysics meets microbiology. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Fernandez, P.; Mao, D.; French, H.K.; Bloem, E.; Binley, A. Self-potential monitoring of the enhanced biodegradation of an organic contaminant using a bioelectrochemical cell. Geophysics 2015, 34, 198–202. [Google Scholar] [CrossRef]
- Heenan, J.W.; Ntarlagiannis, D.; Slater, L.D.; Beaver, C.L.; Rossbach, S.; Revil, A.; Atekwana, E.A.; Bekins, B. Field-scale observations of a transient geobattery resulting from natural attenuation of a crude oil spill. J. Geophys. Res. Biogeosci. 2017, 122, 918–929. [Google Scholar] [CrossRef]
- Ishido, T.; Mizutani, H. Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics. J. Geophys. Res. Space Phys. 1981, 86, 1763–1775. [Google Scholar] [CrossRef]
- Revil, A. Ionic Diffusivity, Electrical Conductivity, Membrane and Thermoelectric Potentials in Colloids and Granular Porous Media: A Unified Model. J. Colloid Interface Sci. 1999, 212, 503–522. [Google Scholar] [CrossRef]
- Revil, A.; Schwaeger, H.; Cathles, L.M.; Manhardt, P.D. Streaming potential in porous media: 2. Theory and application to geothermal systems. J. Geophys. Res. Space Phys. 1999, 104, 20033–20048. [Google Scholar] [CrossRef]
- Revil, A.; Leroy, P. Hydroelectric coupling in a clayey material. Geophys. Res. Lett. 2001, 28, 1643–1646. [Google Scholar] [CrossRef]
- Revil, A.; Naudet, V.; Nouzaret, J.; Pessel, M. Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour. Res. 2003, 39, 1–15. [Google Scholar] [CrossRef]
- Revil, A.; Linde, N.; Cerepi, A.; Jougnot, D.; Matthäi, S.; Finsterle, S. Electrokinetic coupling in unsaturated porous media. J. Colloid Interface Sci. 2007, 313, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Linde, N. Chemico-electromechanical coupling in microporous media. J. Colloid Interface Sci. 2006, 302, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Malama, B.; Kuhlman, K.L.; Revil, A. Theory of transient streaming potentials associated with axial-symmetric flow in unconfined aquifers. Geophys. J. Int. 2009, 179, 990–1003. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Woodruff, W.F.; Lu, N. Constitutive equations for coupled flows in clay materials. Water Resour. Res. 2011, 47, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Ahmed, A.S.; Jardani, A. Self-potential: A Non-intrusive Ground Water Flow Sensor. J. Environ. Eng. Geophys. 2017, 22, 235–247. [Google Scholar] [CrossRef]
- Knight, R.; Pyrak-Nolte, L.J.; Slater, L.; Atekwana, E.; Endres, A.; Geller, J.; Lesmes, D.; Nakagawa, S.; Revil, A.; Sharma, M.M.; et al. Geophysics at the interface: Response of geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces. Rev. Geophys. 2010, 48, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Ikard, S.J.; Revil, A.; Jardani, A.; Woodruff, W.F.; Parekh, M.; Mooney, M. Saline pulse test monitoring with the self-potential method to nonintrusively determine the velocity of the pore water in leaking areas of earth dams and embankments. Water Resour. Res. 2012, 48, 1–17. [Google Scholar] [CrossRef]
- Ikard, S.; Revil, A. Self-potential monitoring of a thermal pulse advecting through a preferential flow path. J. Hydrol. 2014, 519, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Valois, R.; Cousquer, Y.; Schmutz, M.; Pryet, A.; Delbart, C.; Dupuy, A. Characterizing Stream-Aquifer Exchanges with Self-Potential Measurements. Ground Water 2017, 56, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Ikard, S.J.; Teeple, A.P.; Payne, J.D.; Stanton, G.P.; Banta, J.R. New Insights on Scale-dependent Surface-Groundwater Exchange from a Floating Self-potential Dipole. J. Environ. Eng. Geophys. 2018, 23, 261–287. [Google Scholar] [CrossRef]
- Heinson, G.; White, A.; Constable, S.; Key, K. Marine self-potential exploration. Explor. Geophys. 1999, 30, 1–4. [Google Scholar] [CrossRef]
- Heinson, G.; White, A.; Robinson, D.; Fathianpour, N. Marine self-potential gradient exploration of the continental margin. Geophysics 2005, 70, G109–G118. [Google Scholar] [CrossRef]
- Kawada, Y.; Kasaya, T. Marine self-potential survey for exploring seafloor hydrothermal ore deposits. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Safipour, R.; Hölz, S.; Halbach, J.; Jegen, M.; Petersen, S.; Swidinsky, A. A self-potential investigation of submarine massive sulfides: Palinuro Seamount, Tyrrhenian Sea. Geophysics 2017, 82, A51–A56. [Google Scholar] [CrossRef] [Green Version]
- Kawada, Y.; Kasaya, T. Self-potential mapping using an autonomous underwater vehicle for the Sunrise deposit, Izu-Ogasawara arc, southern Japan. Earth Planets Space 2018, 70, 142. [Google Scholar] [CrossRef]
- Ikard, S.J.; Sparks, D.D. Waterborne Gradient Self-Potential, Temperature, and Conductivity Logging of Lake Travis, Texas, Near the Bee Creek Fault, March–April 2020; U.S. Geological Survey Data Release. 2020. Available online: https://www.sciencebase.gov/catalog/item/5e860cdfe4b01d50927fb71a (accessed on 10 May 2021). [CrossRef]
- Ikard, S.J.; Briggs, M.A.; Minsley, B.J.; Lane, J.W. Investigation of Scale-Dependent Groundwater/Surface-Water Exchange in Rivers by Gradient Self-Potential Logging: Numerical Models and Field Experiment Data, Quashnet River, Massachusetts, October 2017 (ver. 2.0, November 2020); U.S. Geological Survey Data Release. 2020. Available online: https://www.sciencebase.gov/catalog/item/5e275734e4b014c85308fc30 (accessed on 10 May 2021). [CrossRef]
- Hunt, B.B.; Cockrell, L.P.; Gary, R.H.; Vay, J.M.; Kennedy, V.; Smith, B.A.; Camp, J.P. Hydrogeologic Atlas of Southwest Travis County, Central Texas: Barton Springs/Edwards Aquifer Conservation District Report of Investigations 2020–0429, April 2020, 80p. with Digital Datasets. Available online: https://repositories.lib.utexas.edu/handle/2152/81562 (accessed on 18 February 2021).
- Crilley, D.M.; Matherne, A.M.; Thomas, N.; Falk, S.E. Seepage Investigations of the Rio Grande from below Leasburg Dam, Leasburg, New Mexico, to above American Dam, El Paso, Texas, 2006–2013; U.S. Geological Survey Open-File Report 2013–1233; U.S. Geological Survey: Reston, VA, USA, 2013; pp. 1–34. [CrossRef] [Green Version]
- George, P.G.; Mace, R.E.; Mullican, W.F. The hydrology of Hudspeth County, Texas. Texas Water Development Board Report 364, pp. 1–106. 2005. Available online: www.twdb.texas.gov/publications/reports/numbered_reports/doc/R364/R364.pdf (accessed on 18 February 2021).
- George, P.G.; Mace, R.E.; Petrossian, R. Aquifers of Texas. Texas Water Development Board Report 380, pp. 1–180. 2011. Available online: www.twdb.texas.gov/publications/reports/numbered_reports/doc/R380_AquifersofTexas.pdf (accessed on 18 February 2021).
- Leggat, E.; Lowry, M.; Hood, J. Ground-water resources of the lower Mesilla Valley, Texas and New Mexico. In Ground-Water Resources of the Lower Mesilla Valley, Texas and New Mexico; US Geological Survey: Liston, VA, USA, 1964; pp. 1–53. [Google Scholar] [CrossRef]
- Hawley, J.W.; Lozinski, R.P. Hydrogeologic Framework of the Mesilla Basin in New Mexico and Western Texas. New Mexico Bureau of Mines and Mineral Resources Open File Report 323, pp. 1–55. 1992. Available online: https://geoinfo.nmt.edu/publications/openfile/downloads/300-399/323/ofr_323.pdf (accessed on 18 February 2021).
- Dunbar, J.B.; Murphy, W.L.; Ballard, R.F.; McGill, T.E.; Peyman-Dove, L.D.; Bishop, M.J. Condition assessment of U.S. International Boundary and Water Commission, Texas and New Mexico Levees—Report 2. U.S.; Army Corps of Engineers Engineer Research and Development Center: Vicksburg, MS, USA, 2004; p. 121. [Google Scholar]
- Zohdy, A.A.; Bisdorf, R.J.; Gates, J.S. Schlumberger Soundings in the Lower Mesilla Valley of the Rio Grande, Texas and New Mexico; U.S. Geological Survey Open-File Report 76–324; U.S. Geological Survey: Reston, VA, USA, 1976; pp. 1–77. [CrossRef] [Green Version]
- Minsley, B.J.; Burton, B.L.; Ikard, S.; Powers, M.H. Hydrogeophysical Investigations at Hidden Dam, Raymond, California. J. Environ. Eng. Geophys. 2011, 16, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Ikard, S.; Revil, A.; Schmutz, M.; Jardani, A.; Karaoulis, M.; Mooney, M. Characterization of focused seepage through an earth-fill dam using geoelectrical methods. Ground Water 2014, 52, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Ikard, S.; Rittgers, J.; Revil, A.; Mooney, M. Geophysical Investigation of Seepage beneath an Earthen Dam. Ground Water 2014, 53, 238–250. [Google Scholar] [CrossRef]
- Ikard, S.; Pease, E. Preferential groundwater seepage in karst terrane inferred from geoelectric measurements. Near Surf. Geophys. 2018, 17, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Ikard, S.J.; Carr, S.M.; Seelig, W.G.; Teeple, A.P. Waterborne Gradient Self-Potential, Temperature, and Conductivity Logging of the Rio Grande from Leasburg Dam State Park, New Mexico to Canutillo, Texas, during a Bankfull Condition, June–July 2020; U.S. Geological Survey Data Release. 2021. Available online: https://doi.org/10.5066/P9GTF1QB (accessed on 10 May 2021). [CrossRef]
- Teeple, A.P. Time-Domain Electromagnetic Data Collected in the U.S. Part of the Mesilla Basin/Conejos-Médanos Aquifer System in Doña Ana County, New Mexico, and El Paso County, Texas, November 2012 U.S.; Geological Survey Data Release. 2017. Available online: https://www.sciencebase.gov/catalog/item/584adb27e4b07e29c706de08 (accessed on 10 May 2021). [CrossRef]
- Abdelrahman, E.M.; Gobashy, M.M.; Essa, K.; Abo-Ezz, E.R.; El-Araby, T.M. A least-squares minimization approach to interpret gravity data due to 2D horizontal thin sheet of finite width. Arab. J. Geosci. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Specific Conductance: U.S. Geological Survey Techniques and Methods; Book 9; U.S. Geological Survey: Reston, VA, USA, 2019; Chapter A6.3; p. 15. [CrossRef]
- U.S. Geological Survey [USGS]. USGS Water Data for the Nation: U.S. Geological Survey National Water Information System Database. 2021. Available online: http://waterdata.usgs.gov/nwis/ (accessed on 7 April 2021). [CrossRef]
- Briggs, M.A.; Lautz, L.K.; Buckley, S.F.; Lane, J.W. Practical limitations on the use of diurnal temperature signals to quantify groundwater upwelling. J. Hydrol. 2014, 519, 1739–1751. [Google Scholar] [CrossRef]
Data Series | Survey Segment 1 | Slope | Intercept | Coefficient of Determination |
---|---|---|---|---|
Electrode Drift Voltage | 1 | 0.00035 | −0.00472 | 0.9556 |
2 | −0.00004 | 0.02242 | 0.0569 | |
3 | −0.00013 | 0.25666 | 0.0318 | |
4 | 0.0002 | −0.96317 | 0.0097 | |
Surface-water Temperature | 1 | 0.00026 | 23.71262 | 0.9292 |
2 | 0.0002 | 22.60852 | 0.9717 | |
3 | 0.00045 | 22.33067 | 0.9758 | |
4 | 0.00035 | 22.71919 | 0.9939 | |
Specific Conductance | 1 | 0.00304 | 623.7121 | 0.7115 |
2 | 0.00532 | 605.9887 | 0.7971 | |
3 | 0.00614 | 611.4147 | 0.9433 | |
4 | 0.00567 | 614.8888 | 0.9666 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikard, S.; Teeple, A.; Humberson, D. Gradient Self-Potential Logging in the Rio Grande to Identify Gaining and Losing Reaches across the Mesilla Valley. Water 2021, 13, 1331. https://doi.org/10.3390/w13101331
Ikard S, Teeple A, Humberson D. Gradient Self-Potential Logging in the Rio Grande to Identify Gaining and Losing Reaches across the Mesilla Valley. Water. 2021; 13(10):1331. https://doi.org/10.3390/w13101331
Chicago/Turabian StyleIkard, Scott, Andrew Teeple, and Delbert Humberson. 2021. "Gradient Self-Potential Logging in the Rio Grande to Identify Gaining and Losing Reaches across the Mesilla Valley" Water 13, no. 10: 1331. https://doi.org/10.3390/w13101331
APA StyleIkard, S., Teeple, A., & Humberson, D. (2021). Gradient Self-Potential Logging in the Rio Grande to Identify Gaining and Losing Reaches across the Mesilla Valley. Water, 13(10), 1331. https://doi.org/10.3390/w13101331