Highly Resolved Runoff Path Simulation Based on Urban Surface Landscape Layout for Sub-Catchment Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Cover Classification
2.3. Generation of a High-Resolution Digital Surface Model
2.4. Sub-Catchment Division
2.5. Minimum Cumulative Resistance (MCR) Model
2.6. Chi-Square Test of Simulation Results
2.7. Gravity Model
2.8. Spatial Autocorrelation
3. Results
3.1. Identification and Analysis of Urban Surfaces
3.2. Distribution Characteristics of Potential Surface Runoff Paths
3.3. Distribution Characteristics of Potential Surface Runoff Based on the Gravity Model
3.4. Spatial Autocorrelation Analysis of Sub-Catchments
4. Discussion
4.1. Advantages of Potential Surface Runoff Simulation
4.2. Strategies for the Protection of Suitable Distribution of Urban Stormwater
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Zhou, H.; Zhang, H.; Du, G.; Zhou, J. Urban flood risk warning under rapid urbanization. Environ. Res. 2015, 139, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Franci, F.; Mandanici, E.; Bitelli, G. Remote sensing analysis for flood risk management in urban sprawl contexts. Geomat. Nat. Hazards Risk 2014, 6, 583–599. [Google Scholar] [CrossRef]
- Ali, M.; Khan, S.J.; Aslam, I.; Khan, Z. Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landsc. Urban Plan. 2011, 102, 271–279. [Google Scholar] [CrossRef]
- Singh, R.B.; Singh, S. Rapid urbanization and induced flood risk in Noida, India. Asian Geogr. 2011, 28, 147–169. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, Z.; Liu, C. What factors are responsible for the Beijing storm? Nat. Hazards 2013, 65, 2399–2400. [Google Scholar] [CrossRef]
- Tingsanchali, T. Urban flood disaster management. Procedia Eng. 2012, 32, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, G.; Quagliarini, E. How to Account for the Human Motion to Improve Flood Risk Assessment in Urban Areas. Water 2020, 12, 1316. [Google Scholar] [CrossRef]
- Ellis, J.R.; O’Donnell, F.C.; Vasconcelos, J.G. A Cost-Optimization Tool for Stormwater Management Plans Using Green Infrastructure Practices. In World Environmental and Water Resources Congress 2020; American Sociaty of Civil Engineers: Reston, VA, USA, 2020; pp. 52–59. [Google Scholar]
- Ruwang, H. 30 sponge cities have been piloted nationwide, and 19 cities have experienced waterlogging this year. China Econ. Wkly. 2017, 2016, 48–50. (In Chinese) [Google Scholar]
- Lovell, S.T.; Taylor, J.R. Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1463. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2014, 12, 525–542. [Google Scholar] [CrossRef]
- Sanders, B.F.; Grant, S.B. Re-envisioning stormwater infrastructure for ultrahazardous flooding. WIREs Water 2020, 7. [Google Scholar] [CrossRef]
- Đukić, V.; Erić, R. SHETRAN and HEC HMS Model Evaluation for Runoff and Soil Moisture Simulation in the Jičinka River Catchment (Czech Republic). Water 2021, 13, 872. [Google Scholar] [CrossRef]
- Al-Ghobari, H.; Dewidar, A.; Alataway, A. Estimation of Surface Water Runoff for a Semi-Arid Area Using RS and GIS-Based SCS-CN Method. Water 2020, 12, 1924. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Ontiveros-Capurata, R.E.; Marcial-Pablo, M.d.J. Rapid urban flood damage assessment using high resolution remote sensing data and an object-based approach. Geomat. Nat. Hazards Risk 2020, 11, 906–927. [Google Scholar] [CrossRef]
- Bai, T.; Mayer, A.L.; Shuster, W.D.; Tian, G. The Hydrologic Role of Urban Green Space in Mitigating Flooding (Luohe, China). Sustainability 2018, 10, 1–3584. [Google Scholar] [CrossRef] [Green Version]
- Towsif Khan, S.; Chapa, F.; Hack, J. Highly Resolved Rainfall-Runoff Simulation of Retrofitted Green Stormwater Infrastructure at the Micro-Watershed Scale. Land 2020, 9, 339. [Google Scholar] [CrossRef]
- Yao, L.; Chen, L.; Wei, W. Assessing the effectiveness of imperviousness on stormwater runoff in micro urban catchments by model simulation. Hydrol. Process. 2016, 30, 1836–1848. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Qiuwen, Z. A GIS-based Subcatchments Division Approach for SWMM. Open Civ. Eng. J. 2015, 9, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Dhanya, C.T.; Chahar, B.R.; Rai, P.K. GIS-based SWMM model for simulating the catchment response to flood events. Hydrol. Res. 2017, 48, 384–394. [Google Scholar]
- Dong, J.; Dai, W.; Shao, G.; Xu, J. Ecological Network Construction Based on Minimum Cumulative Resistance for the City of Nanjing, China. ISPRS Int. Geo Inf. 2015, 4, 2045–2060. [Google Scholar] [CrossRef] [Green Version]
- Chow, M.F.; Yusop, Z. Characterization and source identification of stormwater runoff in tropical urban catchments. Water Sci. Technol. 2014, 69, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Blazquez-Cabrera, S.; Gastón, A.; Beier, P.; Garrote, G.; Simón, M.Á.; Saura, S. Influence of separating home range and dispersal movements on characterizing corridors and effective distances. Landsc. Ecol. 2016, 31, 2355–2366. [Google Scholar] [CrossRef]
- Jiang, W.; Cai, Y.; Tian, J. The application of minimum cumulative resistance model in the evaluation of urban ecological land use efficiency. Arab. J. Geosci. 2019, 12. [Google Scholar] [CrossRef]
- Miao, Z.; Pan, L.; Wang, Q.; Chen, P.; Yan, C.; Liu, L. Research on Urban Ecological Network Under the Threat of Road Networks—A Case Study of Wuhan. ISPRS Int. J. Geo Inf. 2019, 8, 342. [Google Scholar] [CrossRef] [Green Version]
- Soulsby, C.; Tetzlaff, D.; Rodgers, P.; Dunn, S.; Waldron, S. Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: An initial evaluation. J. Hydrol. 2006, 325, 197–221. [Google Scholar] [CrossRef]
- Li, F.; Ye, Y.; Song, B.; Wang, R. Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China. Ecol. Model. 2015, 318, 194–203. [Google Scholar] [CrossRef]
- Gongora, W.R.C.G. The transferability of hydrological models under nonstationary climatic conditions. Comput. Stat. 2020, 5, 1–16. [Google Scholar]
- Chen-jing, F.A.N.; Shi-guang, S.; Si-hui, W.; Guang-hui, S.H.E.; Xin-yi, W. Research on Urban Land Ecological Suitability Evaluation Based on Gravity-Resistance Model: A Case of Deyang City in China. Procedia Eng. 2011, 21, 676–685. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Nakagoshi, N. Spatial-temporal gradient analysis of urban green spaces in Jinan, China. Landsc. Urban Plan. 2006, 78, 147–164. [Google Scholar] [CrossRef]
- Dormann, F.C.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Daniel Kissling, W.; et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef] [Green Version]
- Overmars, K.P.; de Koning, G.H.J.; Veldkamp, A. Spatial autocorrelation in multi-scale land use models. Ecol. Model. 2003, 164, 257–270. [Google Scholar] [CrossRef]
- Dechesne, M.; Barraud, S.; Bardin, J.P. Spatial distribution of pollution in an urban stormwater infiltration basin. J. Contam. Hydrol. 2004, 72, 189–205. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Shi, T.; Qu, X.; Walter, M.T. Effects of urbanization on direct runoff characteristics in urban functional zones. Sci. Total Environ. 2018, 643, 301–311. [Google Scholar] [CrossRef]
- Chang, H.; Johnson, G.; Hinkley, T.; Jung, I.-W. Spatial analysis of annual runoff ratios and their variability across the contiguous U.S. J. Hydrol. 2014, 511, 387–402. [Google Scholar] [CrossRef]
- Western, A.W.; Zhou, S.-L.; Grayson, R.B.; McMahon, T.A.; Blöschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–134. [Google Scholar] [CrossRef]
- Sarmah, T.; Das, S.; Narendr, A.; Aithal, B.H. Assessing human vulnerability to urban flood hazard using the analytic hierarchy process and geographic information system. Int. J. Disaster Risk Reduct. 2020, 50. [Google Scholar] [CrossRef]
- Lifang, Q.; Yichuan, Z.; Wei, C. Evaluation of urban river landscape design rationality based on AHP. Water Sci. Eng. 2008, 1, 75–81. [Google Scholar]
- Laudon, H.; Sjöblom, V.; Buffam, I.; Seibert, J.; Mörth, M. The role of catchment scale and landscape characteristics for runoff generation of boreal streams. J. Hydrol. 2007, 344, 198–209. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L. Mountainous City Featured Landscape Planning Based on GIS-AHP Analytical Method. ISPRS Int. J. Geo Inf. 2020, 9, 211. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Xuxiang, L.; Wang, J.; Zhang, J. Evaluating Ecological Vulnerability Using the GIS and Analytic Hierarchy Process (AHP) Method in Yan’an, China. Pol. J. Environ. Stud. 2016, 25, 599–605. [Google Scholar] [CrossRef]
- Hoffmann, E.; Winde, F. Generating high-resolution digital elevation models for wetland research using Google EarthTM imagery an example from South Africa. Water SA 2010, 36, 53–68. [Google Scholar]
- Chigbu, N.; Okezie, M.; Arungwa, I.D. Comparative Analysis of Google Earth Derived Elevation with in-situ Total Station Method for Engineering Constructions. In Proceedings of the FIG Working Week 2019—Geospatial Information for a Smarter Life and Environmental Resilience, Hanoi, Vietnam, 22–26 April 2019. [Google Scholar]
- Hasan, R.H. Evaluation of the Accuracy of Digital Elevation Model Produced from Different Open Source Data. J. Eng. 2019, 25, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Senior, M.; Scheckenberger, R.; Bishop, B. Modeling Catchbasins and Inlets in SWMM. J. Water Manag. Modeling 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Xie, G.-d.; Li, N.; Wang, S. Effect of urban green space changes on the role of rainwater runoff reduction in Beijing, China. Landsc. Urban Plan. 2015, 140, 8–16. [Google Scholar] [CrossRef]
- Lee, J.H.; Bang, K.W. Characterization of urban stormwater runoff. PERGAMON 2000, 34, 1773–1780. [Google Scholar] [CrossRef]
- Haque, M.A. Study of surface runoff using physical models. Environ. Geol. 2002, 41, 797–805. [Google Scholar] [CrossRef]
- Boongaling, C.G.K.; Faustino-Eslava, D.V.; Lansigan, F.P. Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines. Land Use Policy 2018, 72, 116–128. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Singh, V.P. Effect of microtopography, slope length and gradient, and vegetative cover on overland flow through simulation. J. Hydrol. Eng. 2004, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.-w.; Chen, Y.-C.; Zhang, S.; Yang, S.-M.; Huang, L.; Lei, B.; Li, L.; Zhou, Z.-B.; Xiang, H.-L.; Li, X.-X. Identification and prevention of agricultural non-point source pollution risk based on the minimum cumulative resistance model. Glob. Ecol. Conserv. 2020, 23. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Fath, B.D. Ecological network analysis of an urban water metabolic system: Model development, and a case study for Beijing. Sci. Total Environ. 2010, 408, 4702–4711. [Google Scholar] [CrossRef]
- Salehi, M.; Aghilinasrollahabadi, K.; Salehi Esfandarani, M. An Investigation of Stormwater Quality Variation within an Industry Sector Using the Self-Reported Data Collected under the Stormwater Monitoring Program. Water 2020, 12, 3185. [Google Scholar] [CrossRef]
- McDonald, W. Drones in urban stormwater management: A review and future perspectives. Urban Water J. 2019, 16, 505–518. [Google Scholar] [CrossRef]
- Cai, Q.-C.; Hsu, T.-H.; Lin, J.-Y. Using the General Regression Neural Network Method to Calibrate the Parameters of a Sub-Catchment. Water 2021, 13, 1089. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.; Peng, C. Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecol. Model. 2014, 291, 6–14. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Karymbalis, E.; Skilodimou, H.D.; Gaki-Papanastassiou, K.; Baltas, E.A. Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece. Environ. Earth Sci. 2016, 75, 319. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.P.; Saco, P.; Parsons, T.; Poeppl, R.; Masselink, R.; Cerda, A. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci. Total Environ. 2018, 644, 1557–1572. [Google Scholar] [CrossRef]
Resistance | 120 | 150 | 180 | 300 | 500 | 800 | 1000 |
---|---|---|---|---|---|---|---|
Terrain factors | |||||||
Altitude | 0–30 m | 30–50 m | 50–80 m | 80–100 m | 100–150 m | >150 m | |
Slope | 0–5° | 5–10° | 10–15° | 15–25° | >25° | ||
Relief amplitude | 0–15 | 15–30 | 30–60 | >60 | |||
Roughness | 0–12 | 12–24 | 24–36 | 36–48 | >48 | ||
Landscape factor | |||||||
LUCC | Water | Road | Public Management Land | Green Space | Unused Land | Agricultural Land | Roofs |
P2 | I1 | I2 | P1 | P4 | P3 | I3 |
Goal Layer A | Criterion Layer B | Weight | Index Layer C | Weight |
---|---|---|---|---|
Surface landscape layout | Terrain factors B1 | 0.75 | Altitude C1 | 0.14 |
Slope C2 | 0.35 | |||
Relief amplitude C3 | 0.19 | |||
Roughness C4 | 0.07 | |||
Landscape factor (LUCC) B2 | 0.25 | Green space C5 | 0.04 | |
Water C6 | 0.07 | |||
Agricultural land C7 | 0.03 | |||
Unused land C8 | 0.01 | |||
Road C9 | 0.06 | |||
Roof C10 | 0.02 | |||
Public management land C11 | 0.02 |
Team | Sample Volume (n) | Chi-Square Value | Significance (Two-Sided Test) |
---|---|---|---|
1 | 36 | 119.883 | 0.205 |
2 | 36 | 86.779 | 0.063 |
3 | 36 | 86.779 | 0.113 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 166 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.48 | 0.32 | 0.37 | 0.37 | 1.09 | 0.27 | 0.26 | 0.26 | 0.32 | 1.15 |
2 | 0 | 58.43 | 19.58 | 9.23 | 19.26 | 4.04 | 4.98 | 2.83 | 149.97 | 0.90 |
3 | 0 | 51.95 | 12.50 | 21.11 | 4.32 | 6.57 | 2.72 | 23.05 | 0.67 | |
4 | 0 | 41.79 | 45.52 | 10.19 | 20.02 | 4.49 | 9.15 | 0.86 | ||
5 | 0 | 267.51 | 43.78 | 95.69 | 12.07 | 4.47 | 1.02 | |||
6 | 0 | 955.43 | 83.83 | 112.36 | 9.28 | 3.61 | ||||
7 | 0 | 21.77 | 19.01 | 2.18 | 0.88 | |||||
8 | 0 | 5.98 | 3.09 | 0.74 | ||||||
9 | 0 | 1.43 | 1.06 | |||||||
… | ||||||||||
166 | …… |
Gravity Matrix | 0 | 18.93 | 30 | 40 | 50 | 100 | 300 | 500 |
---|---|---|---|---|---|---|---|---|
d | 17.69 | 11.78 | 14.56 | 9.78 | 8.36 | 4.20 | 1.06 | 0.49 |
Moran’s I | 0.22 | 0.31 | 0.32 | 0.30 | 0.29 | 0.26 | 0.27 | 0.21 |
Z | 12.08 | 16.92 | 17.49 | 16.46 | 15.66 | 14.28 | 15.25 | 12.40 |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, T.; Borowiak, K.; Wu, Y.; Zhang, J. Highly Resolved Runoff Path Simulation Based on Urban Surface Landscape Layout for Sub-Catchment Scale. Water 2021, 13, 1345. https://doi.org/10.3390/w13101345
Bai T, Borowiak K, Wu Y, Zhang J. Highly Resolved Runoff Path Simulation Based on Urban Surface Landscape Layout for Sub-Catchment Scale. Water. 2021; 13(10):1345. https://doi.org/10.3390/w13101345
Chicago/Turabian StyleBai, Tian, Klaudia Borowiak, Yawen Wu, and Jingli Zhang. 2021. "Highly Resolved Runoff Path Simulation Based on Urban Surface Landscape Layout for Sub-Catchment Scale" Water 13, no. 10: 1345. https://doi.org/10.3390/w13101345
APA StyleBai, T., Borowiak, K., Wu, Y., & Zhang, J. (2021). Highly Resolved Runoff Path Simulation Based on Urban Surface Landscape Layout for Sub-Catchment Scale. Water, 13(10), 1345. https://doi.org/10.3390/w13101345