Study on the Exploitation Scheme of Groundwater under Well-Canal Conjunctive Irrigation in Seasonally Freezing-Thawing Agricultural Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Multiscale Numerical Model for Seasonally Freezing-Thawing Agricultural Areas
2.2.1. Multiscale Model MODFLOW-LGR
2.2.2. The Empirical Method of Calculating Groundwater Recharge/Discharge during the Freezing-Thawing Period
2.2.3. Other Source/Sink Terms
2.2.4. Flowchart of the Coupled Model
2.3. Calibration and Validation of the Empirical Mothod
2.4. Data Preparation for the Study Area
3. Results and Discussion
3.1. Calibration and Validation of MODFLOW-LGR
3.2. Water Mass Balance and Exchange Between the Parent and Child Areas
3.3. Model Application for Planning Suitable Size of Well-Irrigated Area
3.4. Model Application for Planning Suitable Controlling Irrigation Area of Single Well
3.5. Groundwater Dynamics Prediction in Yongji Sub-Irrigation District under the Well-Canal Conjunctive Irrigation Plan
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bamberger, M.; Johnson, P.L. Methodology of the world development report 1992: Development and the environment. Eval. Pract. 1993, 14, 275–287. [Google Scholar] [CrossRef]
- Mariolakos, I. Water resources management in the framework of sustainable development. Desalination 2007, 213, 147–151. [Google Scholar] [CrossRef]
- Fasakhodi, A.A.; Nouri, S.H.; Amini, M. Water Resources Sustainability and optimal cropping pattern in farming systems; a multi-objective fractional goal programming approach. Water Resour. Manag. 2010, 24, 4639–4657. [Google Scholar] [CrossRef]
- Van Dam, J.C.; Singh, R.; Bessembinder, J.J.E.; Leffelaar, P.A.; Bastiaanssen, W.G.M.; Jhorar, R.K.; Kroes, J.G.; Droogers, P. Assessing options to increase water productivity in irrigated river basins using remote sensing and modelling tools. Water Resour. Dev. 2006, 22, 115–133. [Google Scholar] [CrossRef]
- Singh, A. Conjunctive use of water resources for sustainable irrigated agriculture. J. Hydrol. 2014, 519, 1688–1697. [Google Scholar] [CrossRef]
- Mao, W.; Yang, J.Z.; Zhu, Y.; Ye, M.; Wu, J.W. Loosely coupled SaltMod for simulating groundwater and salt dynamics under well-canal conjunctive irrigation in semi-arid areas. Agr. Water Manag. 2017, 192, 209–220. [Google Scholar] [CrossRef]
- Chang, L.C.; Ho, C.C.; Yeh, M.S.; Yang, C.C. An integrating approach for conjunctive-use planning of surface and subsurface water system. Water Resour. Manag. 2011, 25, 59–78. [Google Scholar] [CrossRef]
- Cheng, Y.; Lee, C.H.; Tan, Y.C.; Yeh, H.F. An optimal water allocation for an irrigation district in Pingtung County, Taiwan. Irrig. Drain. 2009, 58, 287–306. [Google Scholar] [CrossRef]
- Cosgrove, D.M.; Johnson, G.S. Aquifer management zones based on simulated surface-water response functions. J. Water Resour. Plan. Manag. 2005, 131, 89–100. [Google Scholar] [CrossRef]
- Fisher, A.; Fullerton, D.; Hatch, N.; Reinelt, P. Alternatives for managing drought: A comparative cost analysis. J. Environ. Econ. Manag. 1995, 29, 304–320. [Google Scholar] [CrossRef] [Green Version]
- Mani, A.; Tsai, F.T.C.; Kao, S.C.; Naz, B.S.; Ashfaq, M.; Rastogi, D. Conjunctive management of surface and groundwater resources under projected future climate change scenarios. J. Hydrol. 2016, 540, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D. Conjunctive surface water and groundwater management under climate change. Front. Environ. Sci. 2015, 3, 1–10. [Google Scholar] [CrossRef]
- Ejaz, M.S.; Peralta, R.C. Maximizing conjunctive use of surface and ground water under surface water quality constraints. Adv. Water Resour. 1995, 18, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.G.; Cui, Y.L.; Luo, Y.F. Integrated modeling of conjunctive water use in a canal-well irrigation district in the lower Yellow River Basin, China. J. Irrig. Drain. Eng. 2013, 139, 775–784. [Google Scholar] [CrossRef]
- Azaiez, M.N. A model for conjunctive use of ground and surface water with opportunity costs. Eur. J. Oper. Res. 2002, 143, 611–624. [Google Scholar] [CrossRef]
- Li, P.Y.; Qian, H.; Wu, J.H. Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China. Int. J. Water Resour. Dev. 2018, 34, 337–353. [Google Scholar] [CrossRef]
- Surapaneni, A.; Olsson, K.A. Sodification under conjunctive water use in the Shepparton Irrigation Region of northern Victoria: A review. Aust. J. Exp. Agric. 2002, 42, 249–263. [Google Scholar] [CrossRef]
- Gleeson, T.; VanderSteen, J.; Sophocleous, M.A.; Taniguchi, M.; Alley, W.M.; Allen, D.M.; Zhou, Y. Groundwater sustainability strategies. Nat. Geosci. 2010, 3, 378–379. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Mao, W.; Yang, J.Z.; Zhu, Y.; Wu, J.W. Soil salinity process of Hetao Irrigation District after application of well-canal conjunctive irrigation and mulched drip irrigation. Trans. CSAE 2018, 34, 93–101. (In Chinese) [Google Scholar] [CrossRef]
- Wu, J.W.; Yang, Y.; Zhu, Y.; Yu, L.S.; Yang, W.Y.; Yang, J.Z. Simulation and prediction of groundwater considering seasonal freezing-thawing in irrigation area with conjunctive use of groundwater and surface water. Trans. CSAE 2018, 34, 168–178. (In Chinese) [Google Scholar] [CrossRef]
- Bejranonda, W.; Koch, M.; Koontanakulvong, S. Surface water and groundwater dynamic interaction models as guiding tools for optimal conjunctive water use policies in the central plain of Thailand. Environ. Earth Sci. 2013, 70, 2079–2086. [Google Scholar] [CrossRef]
- El-Rawy, M.; Zlotnik, V.A.; Al-Raggad, M.; Al-Maktoumi, A.; Kacimov, A.; Abdalla, O. Conjunctive use of groundwater and surface water resources with aquifer recharge by treated wastewater: Evaluation of management scenarios in the Zarqa River Basin, Jordan. Environ. Earth Sci. 2016, 75, 1146.1–1146.21. [Google Scholar] [CrossRef]
- Li, P.; Qi, X.B.; Nurolla, M.; Huang, Z.D.; Liang, Z.J.; Qiao, D.M. Response of precipitation to ratio of canal to wells and its environmental effects analysis in combined well-canal irrigation area. Trans. CSAE 2015, 31, 123–128. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.; Quan, J.; Li, X.Y.; Wu, X.C.; Wu, H.W.; Li, Y.T.; Li, G.Y. Establishing a model of conjunctive regulation of surface water and groundwater in the arid regions. ” Agric. Water Manag. 2016, 174, 30–38. [Google Scholar] [CrossRef]
- Seo, S.B.; Mahinthakumar, G.; Sankarasubramanian, A.; Kumar, M. Conjunctive management of surface water and groundwater resources under drought conditions using a fully coupled hydrological model. J. Water Resour. Plan. Manag. 2018, 144, 04018060.1–04018060.11. [Google Scholar] [CrossRef] [Green Version]
- Ayvaz, M.T.; Karahan, H. A simulation/optimization model for the identification of unknown groundwater well locations and pumping rates. J. Hydrol. 2008, 357, 76–92. [Google Scholar] [CrossRef]
- Bayer, P.; Duran, E.; Baumann, R.; Finkel, M. Optimized groundwater drawdown in a subsiding urban mining area. J. Hydrol. 2009, 365, 95–104. [Google Scholar] [CrossRef]
- Huang, C.; Mayer, A.S. Pump-and-treat optimization using well locations and pumping rates as decision variables. Water Resour. Res. 1997, 33, 1001–1012. [Google Scholar] [CrossRef]
- Katsifarakis, K.L.; Nikoletos, I.A.; Stavridis, C. Minimization of transient groundwater pumping cost-analytical and practical solutions. Water Resour. Manag. 2018, 32, 1053–1069. [Google Scholar] [CrossRef]
- Moreno, M.A.; Córcoles, J.I.; Moraleda, D.A.; Martinez, A.; Tarjuelo, J.M. Optimization of underground water pumping. J. Irrig. Drain. Eng. 2010, 136, 414–420. [Google Scholar] [CrossRef]
- Park, C.H.; Aral, M.M. Multi-objective optimization of pumping rates and well placement in coastal aquifers. J. Hydrol. 2004, 290, 80–99. [Google Scholar] [CrossRef]
- Lee, H.; Koo, M.H.; Oh, S. Modeling stream-aquifer interactions under seasonal groundwater pumping and managed aquifer recharge. Groundwater 2019, 57, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Mikita, M.; Yamanaka, T.; Lorphensri, O. Anthropogenic changes in a confined groundwater flow system in the Bangkok basin, Thailand, part I: Was groundwater-recharge enhanced? Hydrol. Process. 2011, 25, 2726–2733. [Google Scholar] [CrossRef]
- Mohanty, S.; Jha, M.K.; Kumar, A.; Brahmanand, P.S. Optimal development of groundwater in a well command of eastern India using integrated simulation and optimization modelling. Irrig. Drain. 2013, 62, 363–376. [Google Scholar] [CrossRef]
- Sarwar, A.; Eggers, H. Development of a conjunctive use model to evaluate alternative management options for surface and groundwater resources. Hydrogeol. J. 2006, 14, 1676–1687. [Google Scholar] [CrossRef]
- Seo, S.B.; Mahinthakumar, G.; Sankarasubramanian, A.; Kumar, M. Assessing the restoration time of surface water and groundwater systems under groundwater pumping. Stoch. Environ. Res. Risk Assess. 2018, 32, 2741–2759. [Google Scholar] [CrossRef]
- Zume, J.; Tarhule, A. Simulating the impacts of groundwater pumping on stream–aquifer dynamics in semi-arid north-western Oklahoma, USA. Hydrogeol. J. 2008, 16, 797–810. [Google Scholar] [CrossRef]
- Al-Salamah, I.S.; Ghazaw, Y.M.; Ghumman, A.R. Groundwater modeling of Saq Aquifer Buraydah Al Qassim for better water management strategies. Environ. Monit. Assess. 2011, 173, 851–860. [Google Scholar] [CrossRef]
- Liu, C.W.; Lin, C.N.; Jang, C.H.; Chen, C.P.; Chang, J.F.; Fan, C.C.; Lou, K.H. Sustainable groundwater management in Kinmen Island. Hydrol. Process. 2006, 20, 4363–4372. [Google Scholar] [CrossRef]
- McCallum, A.M.; Andersen, M.S.; Giambastiani, B.; Kelly, B.F.; Ian Acworth, R. River–aquifer interactions in a semi-arid environment stressed by groundwater abstraction. Hydrol. Process. 2013, 27, 1072–1085. [Google Scholar] [CrossRef]
- Pokhrel, Y.N.; Koirala, S.; Yeh, P.J.F.; Hanasaki, N.; Longuevergne, L.; Kanae, S.; Oki, T. Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resour. Res. 2015, 51, 78–96. [Google Scholar] [CrossRef] [Green Version]
- Reshmidevi, T.V.; Kumar, D.N. Modelling the impact of extensive irrigation on the groundwater resources. Hydrol. Process. 2014, 28, 628–639. [Google Scholar] [CrossRef]
- Mehl, S.; Hill, M.C.; Leake, S.A. Comparison of local grid refinement methods for MODFLOW. Groundwater 2006, 44, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Mehl, S.; Hill, M.C. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv. Water Resour. 2002, 25, 497–511. [Google Scholar] [CrossRef]
- Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.A. A new ghost-node method for linking different models and initial investigations of heterogeneity and nonmatching grids. Adv. Water Resour. 2007, 30, 1722–1736. [Google Scholar] [CrossRef]
- Wu, M.S.; Huang, J.S.; Wu, J.W.; Tan, X.; Jansson, P.E. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China. J. Hydrol. 2016, 535, 46–53. [Google Scholar] [CrossRef]
- Li, R.P.; Shi, H.B.; Flerchinger, G.N.; Akae, T.; Wang, C.S. Simulation of freezing and thawing soils in Inner Mongolia Hetao Irrigation District, China. Geoderma 2012, 173–174, 28–33. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost-a review. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Booij, M.; Leijnse, A.; Haldorsen, S.; Heim, M.; Rueslåtten, H. Subpermafrost ground modeling in Ny-Ålesund, Svalbard. Nordic Hydrol. 1998, 29, 358–396. [Google Scholar] [CrossRef] [Green Version]
- Frederick, J.M.; Buffett, B.A. Taliks in relict submarine permafrost and methane hydrate deposits: Pathways for gas escape under present and future conditions. J. Geophys. Res. Earth Sur. 2014, 119, 106–122. [Google Scholar] [CrossRef]
- Grenier, C.; Anbergen, H.; Bense, V.; Chanzy, Q.; Coon, E.; Collier, N.; Costard, F.; Ferry, M.; Frampton, A.; Frederick, J.; et al. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases. Adv. Water Resour. 2018, 114, 196–218. [Google Scholar] [CrossRef]
- Shojae-Ghias, M.; Therrien, R.; Molson, J.; Lemieux, J.-M. Controls on permafrost thaw in a coupled groundwater flow and heat transport system: Iqaluit Airport, Nunavut, Canada. Hydrogeol. J. 2017, 25, 657–673. [Google Scholar] [CrossRef]
- Hansson, K.; Šimůnek, J.; Mizoguchi, M.; Lundin, L.C.; van Genuchten, M.T. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications. Vadose Zone J. 2004, 3, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Assefa, K.A.; Woodbury, A.D. Transient, spatially varied groundwater recharge modeling. Water Resour. Res. 2013, 49, 4593–4606. [Google Scholar] [CrossRef]
- Yang, W.Y.; Hao, P.J.; Zhu, Y.; Liu, J.S.; Yu, J.; Yang, J.Z. Groundwater dynamics forecast under conjunctive use of groundwater and surface water in seasonal freezing and thawing area. Trans. CSAE 2017, 33, 137–145. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.Y.; Peng, P.Y.; Hao, P.J.; Yu, J.; Yang, J.Z.; Zhu, Y. Well-canal conjunctive irrigation mode and potential of water-saving amount based on the balance of exploitation and supplement for Hetao Irrigation District. China Rural Water Hydropower 2016, 8, 18–24. (In Chinese) [Google Scholar]
- Mehl, S.W.; Hill, M.C. MODFLOW–LGR—Documentation of ghost node local grid refinement (LGR2) for multiple areas and the boundary flow and head (BFH2) package. In U.S. Geological Survey Techniques and Methods; Book 6, Chapter A44; USGS Publications: Reston, VA, USA, 2013; p. 43. Available online: https://pubs.usgs.gov/tm/6a44/pdf/T&M6A-44.pdf (accessed on 16 May 2021).
- Cui, L.H.; Zhu, Y.; Zhao, T.X.; Ye, M.; Yang, J.Z.; Wu, J.W. Evaluation of upward flow of groundwater to freezing soils and rational per-freezing water table depth in agricultural areas. J. Hydrol. 2020, 585, 124825. [Google Scholar] [CrossRef]
- Chen, J.F.; Zheng, X.Q.; Zhang, Y.B.; Qin, Z.D.; Sun, M. Simulation of soil moisture evaporation under different groundwater level depths during seasonal freeze-thaw period. Trans. Chin. Soc. Agric. Mach. 2015, 46, 131–140. (In Chinese) [Google Scholar]
- Shang, S.H.; Lei, Z.D.; Yang, S.X.; Wang, Y.; Zhao, D.M. Study on soil water movement with changeable groundwater level during soil freezing and thawing. Trans. CSAE 1999, 15, 64–68. (In Chinese) [Google Scholar]
- Bakker, M.; Post, V.; Langevin, C.D.; Hughes, J.D.; White, J.T.; Starn, J.J.; Fienen, M.N. Scripting MODFLOW model development using Python and Flopy. Groundwater 2016, 54, 733–739. [Google Scholar] [CrossRef]
- Yang, W.Y. Numerical Simulation of Conjunctive Use of Groundwater and Surface Water in Yongji Irrigation Field of Hetao Irrigation District; Wuhan University: Wuhan, China, 2016. (In Chinese) [Google Scholar]
- Yu, L.S. Numerical Simulation of Conjunctive Use of Groundwater and Surface Water in Hetao Irrigation District and Water Resources Forecast; Wuhan University: Wuhan, China, 2017. (In Chinese) [Google Scholar]
- Sun, G.F. Study on Soil Salinity Dynamics at Multiple Scales and Long-Term Solute Balance Models in Arid Area; Wuhan University: Wuhan, China, 2020. (In Chinese) [Google Scholar]
- Xu, X.; Huang, G.; Zhan, H.; Qu, Z.; Huang, Q. Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. J. Hydrol. 2012, 412–413, 170–181. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, T.S.; Fan, X.L. Numerical simulation of groundwater in Yongji Irrigation Area in Hetao Irrigation District. China Rural Water Hydropower 2010, 2, 79–83. (In Chinese) [Google Scholar]
- Qian, Y.P.; Wang, L.; Li, W.Y.; Lin, Y.P. Study on surface evaporation of Bayangaole experimental station. Hydrology 1998, 4, 35–38. (In Chinese) [Google Scholar]
- Wang, Y.D. Analysis on changes of groundwater table before and after water saving reconstruction in Hetao Irrigation District. Water Sav. Irrig. 2002, 1, 15–17. (In Chinese) [Google Scholar]
- Cui, Y.L.; Shao, J.L.; Han, S.P. Ecological environment adjustment by groundwater in northwest China. Earth Sci. Front. 2001, 8, 191–196. (In Chinese) [Google Scholar] [CrossRef]
- Yang, L.H.; Shen, R.K.; Cao, X.L. Scheme of groundwater use in Hetao Irrigation District in Inner Mongolia. Trans. CSAE 2003, 19, 56–59. (In Chinese) [Google Scholar]
Sub-Irrigation District | [αT, βT, γT] (°C, –, °C) | [αH, βH, γH] (m, –, m) | Lagging Days (d) | MAE (m) | RRMSE (%) | PBIAS (%) | R |
---|---|---|---|---|---|---|---|
Ulanbuh | [16.07, 2.91, 9.56] | [−0.905, 2.162, −0.106] | 43 | 0.105 | 6.53 | −3.86 | 0.94 |
Jiefangzha | [15.74, 2.91, 8.38] | [−1.045, 2.045, −0.001] | 50 | 0.123 | 7.35 | −4.22 | 0.97 |
Yongji | [15.95, 2.91, 8.97] | [−0.817, 1.978, 0.035] | 54 | 0.104 | 6.23 | −2.93 | 0.93 |
Yichang | [16.34, 2.90, 8.21] | [−1.092, 2.087, −0.055] | 47 | 0.158 | 9.56 | −5.31 | 0.95 |
Urad | [16.23, 2.90, 9.34] | [−1.034, 2.232, −0.221] | 39 | 0.173 | 11.46 | −5.33 | 0.87 |
Irrigation Area | MAE (m) | RRMSE (%) | PBIAS (%) | R |
---|---|---|---|---|
Whole district | 0.151 | 8.38 | 3.23 | 0.84 |
Heji | 0.181 | 10.56 | 4.56 | 0.84 |
Nanbian | 0.387 | 21.88 | 11.40 | 0.37 |
Beibian | 0.387 | 9.25 | −5.06 | 0.58 |
Yonglan | 0.214 | 12.84 | 3.49 | 0.84 |
Yonggang | 0.253 | 13.79 | −7.34 | 0.73 |
Xile | 0.333 | 21.74 | 14.50 | 0.59 |
Xinhua | 0.232 | 15.01 | −1.29 | 0.72 |
Tiancai | 0.344 | 27.59 | −11.30 | 0.58 |
Xinji | 0.243 | 19.14 | −7.10 | 0.71 |
Datuishui | 0.252 | 18.48 | 12.25 | 0.76 |
Zhengshao | 0.355 | 19.28 | 12.41 | 0.64 |
Irrigation Area | Months | ||||||
---|---|---|---|---|---|---|---|
Growth Period | Autumn Irrigation Period | ||||||
May | June | July | August | September | October | November | |
Heji | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 |
Nanbian | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 |
Beibian | 0.35 | 0.35 | 0.2 | 0.2 | 0.2 | 0.35 | 0.35 |
Yonglan | 0.35 | 0.35 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 |
Yonggang | 0.35 | 0.35 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 |
Erhao | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 |
Xile | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 |
Xinhua | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 |
Tiancai | 0.35 | 0.35 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 |
Xinji | 0.35 | 0.35 | 0.15 | 0.15 | 0.15 | 0.35 | 0.35 |
Datuishui | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 |
Zhengshao | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 |
Water Balance Items (×104 m3) | Calibration Period | Validation Period | |
---|---|---|---|
Parent model domain (Yongji sub-irrigation district) | Recharge from irrigation and precipitation | 15,226 | 14,926 |
Recharge from river | 6819 | 6404 | |
Phreatic evaporation | 21,435 | 20,253 | |
Discharge to drains | 206 | 233 | |
Child model domain (Longsheng well-irrigated area) | Recharge from irrigation and precipitation | 22 | 22 |
Phreatic evaporation | 58 | 45 | |
Discharge to drains | 0 | 0 | |
Pumping water in the well-irrigated area | 216 | 216 | |
Recharge from parent model | 239 | 243 |
Equilibrium (×104 m3) | S1 | S2 | S3 | S4 |
---|---|---|---|---|
Recharge from irrigation and precipitation | 26.87 | 44.42 | 66.36 | 92.69 |
Phreatic evaporation | 28.66 | 34.27 | 32.57 | 26.26 |
Discharge to drains | 0 | 0 | 0 | 0 |
Pumping water in the well-irrigated area | 145.18 | 240.13 | 358.70 | 501.12 |
Recharge from the surrounding canal-irrigated area | 149.07 | 231.43 | 323.05 | 425.42 |
The ratio of recharge from canal-irrigated area to amount of pumping water (%) | 103 | 96 | 90 | 85 |
Scenario No. | Controlling Irrigation Area of Single Well (×104 m2) | Maximum Water Table Depth (m) | Percentage of Area with Average Water Table Depth Exceeds 2.8 m (%) |
---|---|---|---|
A1 | 45.97 | 6.37 | 61.58 |
A2 | 36.77 | 5.90 | 61.14 |
A3 | 24.52 | 5.16 | 61.14 |
A4 | 18.39 | 4.72 | 59.01 |
A5 | 16.34 | 4.59 | 56.99 |
A6 | 14.71 | 4.55 | 60.64 |
A7 | 7.35 | 4.17 | 60.69 |
No. | Equilibrium (×104 m3) | |||
---|---|---|---|---|
Recharge from Irrigation and Precipitation | Phreatic Evaporation | Pumping Water in the Well-irrigated Area | Recharge from Canal-Irrigated Area | |
1 | 39.24 | 32.81 | 240.13 | 228.00 |
2 | 39.24 | 23.29 | 240.13 | 217.00 |
3 | 39.24 | 21.42 | 240.13 | 214.92 |
4 | 39.24 | 19.60 | 240.13 | 215.55 |
5 | 39.24 | 8.31 | 240.13 | 201.30 |
6 | 39.24 | 11.26 | 240.13 | 206.37 |
7 | 39.24 | 17.18 | 240.13 | 214.32 |
8 | 39.24 | 30.22 | 240.13 | 225.53 |
9 | 39.24 | 25.21 | 240.13 | 223.45 |
10 | 39.24 | 39.11 | 240.13 | 237.63 |
11 | 39.24 | 55.06 | 240.13 | 253.61 |
12 | 39.24 | 16.49 | 240.13 | 215.79 |
13 | 39.24 | 55.18 | 240.13 | 252.41 |
14 | 39.24 | 29.90 | 240.13 | 228.73 |
15 | 39.24 | 5.25 | 240.13 | 200.36 |
16 | 39.24 | 33.62 | 240.13 | 231.18 |
Well-irrigated area | 628 | 424 | 3842 | 3566 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhu, Y.; Mao, W.; Dai, H.; Ye, M.; Wu, J.; Yang, J. Study on the Exploitation Scheme of Groundwater under Well-Canal Conjunctive Irrigation in Seasonally Freezing-Thawing Agricultural Areas. Water 2021, 13, 1384. https://doi.org/10.3390/w13101384
Yang Y, Zhu Y, Mao W, Dai H, Ye M, Wu J, Yang J. Study on the Exploitation Scheme of Groundwater under Well-Canal Conjunctive Irrigation in Seasonally Freezing-Thawing Agricultural Areas. Water. 2021; 13(10):1384. https://doi.org/10.3390/w13101384
Chicago/Turabian StyleYang, Yang, Yan Zhu, Wei Mao, Heng Dai, Ming Ye, Jingwei Wu, and Jinzhong Yang. 2021. "Study on the Exploitation Scheme of Groundwater under Well-Canal Conjunctive Irrigation in Seasonally Freezing-Thawing Agricultural Areas" Water 13, no. 10: 1384. https://doi.org/10.3390/w13101384
APA StyleYang, Y., Zhu, Y., Mao, W., Dai, H., Ye, M., Wu, J., & Yang, J. (2021). Study on the Exploitation Scheme of Groundwater under Well-Canal Conjunctive Irrigation in Seasonally Freezing-Thawing Agricultural Areas. Water, 13(10), 1384. https://doi.org/10.3390/w13101384