Effects of Intermittent Water Allocation on Vegetation Dynamics in Lake Baiyangdian, North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Statistical Methods
2.3.1. STR Trend Component Extraction
2.3.2. Linear Regression of the Trend
2.3.3. Abrupt Change Detection
2.3.4. ANOVA
3. Results
3.1. Statistics Description
3.2. NDVI Trend Analysis
3.3. Analysis of Abrupt Change
3.4. Ecological Responses of Vegetation
4. Discussion
5. Conclusions
- 1)
- The significant increasing trend of each NDVI category was detected by linear regression. The decadal increasing NDVI trend implied the positive effects of ecological restoration due to long-term water allocations.
- 2)
- The immediate response of vegetation to water allocation was not detected based on the 95% abrupt change intervals. The high-frequency and long-term water divisions could increase the significant abrupt intervals. There was also more uncertainty and complexity in vegetation response to water allocation on temporal scales, although most abrupt changes were detected in growing seasons.
- 3)
- Extremely significant differences in NDVI variations before and after water allocations were detected by ANOVA (p < 0.001, t-test). The longer the duration of water allocation was maintained, the higher the detection was in relation to the vegetation coverage. The increased vegetation coverage benefited from the constant water supply.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, D.; Ludwig, F.; Huang, H.Q.; Werners, S.E. Many-objective robust decision making for water allocation under climate change. Sci. Total Environ. 2017, 607–608, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Chen, X.; Niu, J. Does Vegetation Restoration Change Regional Ecohydrological Condition at the Loess Plateau in China? Environ. Nat. Resour. Res. 2016, 6, 116. [Google Scholar] [CrossRef]
- Catford, J.A.; Jansson, R. Drowned, buried and carried away: Effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytol. 2014, 204, 19–36. [Google Scholar] [CrossRef]
- Stella, J.C.; Rodríguez-González, P.M.; Dufour, S.; Bendix, J. Riparian vegetation research in Mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. Hydrobiologia 2013, 719, 291–315. [Google Scholar] [CrossRef]
- Nabinejad, S.; Jamshid Mousavi, S.; Kim, J.H. Sustainable Basin-Scale Water Allocation with Hydrologic State-Dependent Multi-Reservoir Operation Rules. Water Resour. Manag. 2017, 31, 3507–3526. [Google Scholar] [CrossRef]
- Xiao, Y.; Hipel, K.W.; Fang, L. Incorporating Water Demand Management into a Cooperative Water Allocation Framework. Water Resour. Manag. 2016, 30, 2997–3012. [Google Scholar] [CrossRef]
- Xu, J.; Ma, N.; Lv, C. Dynamic equilibrium strategy for drought emergency temporary water transfer and allocation management. J. Hydrol. 2016, 539, 700–722. [Google Scholar] [CrossRef]
- Degefu, D.M.; He, W.; Yuan, L.; Zhao, J.H. Water Allocation in Transboundary River Basins under Water Scarcity: A Cooperative Bargaining Approach. Water Resour. Manag. 2016, 30, 4451–4466. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; McKee, M. Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines, and remotely sensed data. Agric. Water Manag. 2015, 153, 42–50. [Google Scholar] [CrossRef]
- Gerten, D.; Schaphoff, S.; Haberlandt, U.; Lucht, W.; Sitch, S. Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 2004, 286, 249–270. [Google Scholar] [CrossRef]
- Ke, W.; Lei, Y.; Sha, J.; Zhang, G.; Yan, J.; Lin, X.; Pan, X. Dynamic simulation of water resource management focused on water allocation and water reclamation in Chinese mining cities. Water Policy 2016, 18, 844–861. [Google Scholar] [CrossRef]
- Ling, H.; Zhang, P.; Xu, H.; Zhang, G. Determining the ecological water allocation in a hyper-arid catchment with increasing competition for water resources. Glob. Planet. Chang. 2016, 145, 143–152. [Google Scholar] [CrossRef]
- Shen, Q.; Gao, G.; Lü, Y.; Wang, S.; Jiang, X.; Fu, B. River flow is critical for vegetation dynamics: Lessons from multi-scale analysis in a hyper-arid endorheic basin. Sci. Total Environ. 2017, 603–604, 290–298. [Google Scholar] [CrossRef]
- Akram, A.A.; Mendelsohn, R. Agricultural water allocation efficiency in a developing country canal irrigation system. Environ. Dev. Econ. 2017, 22, 571–593. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Zhao, W.; Daryanto, S.; Wang, L.; Fan, H.; Feng, Q.; Wang, Y. The spatial distribution and temporal variation of desert riparian forests and their influencing factors in the downstream Heihe River basin, China. Hydrol. Earth Syst. Sci. 2017, 21, 2405. [Google Scholar] [CrossRef] [Green Version]
- Imentai, A.; Thevs, N.; Schmidt, S.; Nurtazin, S.; Salmurzauli, R. Vegetation, fauna, and biodiversity of the Ile Delta and southern Lake Balkhash—A review. J. Great Lakes Res. 2015, 41, 688–696. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water–ecosystem–economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wang, C.; Chen, X.; Guan, G. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change. Mol. Biol. Rep. 2016, 43, 629–637. [Google Scholar] [CrossRef]
- López-Moreno, J.; Zabalza, J.; Vicente-Serrano, S.; Revuelto, J.; Gilaberte, M.; Azorin-Molina, C.; Morán-Tejeda, E.; García-Ruiz, J.M.; Tague, C. Impact of climate and land use change on water availability and reservoir management: Scenarios in the Upper Aragón River, Spanish Pyrenees. Sci. Total Environ. 2014, 493, 1222–1231. [Google Scholar] [CrossRef] [Green Version]
- Yahdjian, L.; Sala, O.E. Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology 2006, 87, 952–962. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Burgher, I. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J. Arid Environ. 2015, 113, 59–68. [Google Scholar] [CrossRef]
- Sweet, S.K.; Asmus, A.; Rich, M.E.; Wingfield, J.; Gough, L.; Boelman, N.T. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra. Ecol. Appl. 2015, 25, 779–790. [Google Scholar] [CrossRef]
- Omute, P.; Corner, R.; Awange, J.L. The use of NDVI and its derivatives for monitoring Lake Victoria’s water level and drought conditions. Water Resour. Manag. 2012, 26, 1591–1613. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, T.; Jiang, C.; Cao, S. Opportunity cost of water allocation to afforestation rather than conservation of natural vegetation in China. Land Use Policy 2016, 50, 67–73. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, J.; Chen, L.; Zhao, T. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manag. 2016, 183, 843–849. [Google Scholar] [CrossRef]
- Jacobs, K.; Lebel, L.; Buizer, J.; Addams, L.; Matson, P.; McCullough, E.; Garden, P.; Saliba, G.; Finan, T. Linking knowledge with action in the pursuit of sustainable water-resources management. Proc. Natl. Acad. Sci. USA 2016, 113, 4591–4596. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Hu, G.; Dang, Y.; Weindorf, D.C.; Sheng, J. Afforestation and the impacts on soil and water conservation at decadal and regional scales in Northwest China. J. Arid Environ. 2016, 130, 98–104. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Zhao, Y.; Yang, Z. Long-term periodic structure and seasonal-trend decomposition of water level in Lake Baiyangdian, Northern China. Int. J. Environ. Sci. Technol. 2014, 11, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Dokumentov, A.; Hyndman, R.J. STR: A Seasonal-Trend Decomposition Procedure Based on Regression; Monash University, Department of Econometrics and Business Statistics: Melbourne, Australia, 2015. [Google Scholar]
- Wang, F.; Wang, X.; Zhao, Y.; Yang, Z. Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China. Int. J. Biometeorol. 2014, 58, 1531–1543. [Google Scholar] [CrossRef]
- Ling, H.; Guo, B.; Xu, H.; Fu, J. Configuration of water resources for a typical river basin in an arid region of China based on the ecological water requirements (EWRs) of desert riparian vegetation. Glob. Planet. Chang. 2014, 122, 292–304. [Google Scholar] [CrossRef]
- Hu, Y.-X.; Huang, J.-L.; Du, Y.; Han, P.-P.; Wang, J.-L.; Huang, W. Monitoring wetland vegetation pattern response to water-level change resulting from the Three Gorges Project in the two largest freshwater lakes of China. Ecol. Eng. 2015, 74, 274–285. [Google Scholar] [CrossRef]
- Xu, H.-L.; Mao, Y.; Li, J.-M. Changes in groundwater levels and the response of natural vegetation to transfer of water to the lower reaches of the Tarim River. J. Environ. Sci. 2007, 19, 1199–1207. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; McVicar, T.R.; Paydar, Z.; Li, L.; Guerschman, J.P.; Donohue, R.J.; Dutta, D.; Podger, G.M.; van Dijk, A.I.; Chiew, F.H. Dynamic identification of summer cropping irrigated areas in a large basin experiencing extreme climatic variability. Remote Sens. Environ. 2014, 154, 139–152. [Google Scholar] [CrossRef]
- Kaune, A.; Werner, M.; Rodríguez, E.; Karimi, P.; de Fraiture, C. A novel tool to assess available hydrological information and the occurrence of sub-optimal water allocation decisions in large irrigation districts. Agric. Water Manag. 2017, 191, 229–238. [Google Scholar] [CrossRef]
Year | Time Period of Water Allocation | Reservoir | Discharge Out of the Reservoir (106 m3) | Discharge Flow into the Lake (106 m3) | Percentage to Lake Volume (%) |
---|---|---|---|---|---|
1998 | Nov | Angezhuang | 33.06 | 21.5 | 1.0% |
1999 | Feb–Mar | Angezhuang | 27.43 | 17.8 | 1.3% |
2000 | Jul, Dec–Jan | Angezhuang, Wangkuai | 111.1 | 58.6 | 10.1% |
2001 | Feb–Mar, Jun–Jul | Angezhuang, Wangkuai | 94.7 | 66.7 | 14.5% |
2002 | Feb–May, Jul–Aug | Xidayang, Wangkuai | 150 | 85.7 | 31.9% |
2003 | Jan–Mar | Wangkuai | 200 | 116.3 | 21.3% |
2004 | Feb–Jun | Yuecheng | 390 | 160 | 14.5% |
2005 | Mar–Apr | Angezhuang | 58.6 | 42.5 | 3.2% |
2006 | Mar–Apr | Angezhuang, Wangkuai | 122 | 56.7 | 6.5% |
2007 | Nov–Mar | Yellow River | 200 | 100.1 | 13.2% |
2008 | Jan–Jun | Yellow River | 312 | 156.6 | 13.1% |
Levels | Duration Month | N | Before Group | Current Group | After Group | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | NDVImax | NDVImin | NDVImost | NDVImean | NDVIsd | Year | NDVImax | NDVImin | NDVImost | NDVImean | NDVIsd | Year | NDVImax | NDVImin | NDVImost | NDVImean | NDVIsd | |||
Stage 1 | Nov | 1149 | - | - | - | - | - | - | 1998 | 0.412 | −0.004 | 0.160 | 0.203 | 0.103 | 1999 | 0.356 | 0.020 | 0.184 | 0.194 | 0.057 |
Stage 2 | Jan–Feb | 2298 | - | - | - | - | - | - | 1999 | 0.252 | −0.040 | 0.164 | 0.102 | 0.061 | 2000 | 0.296 | −0.008 | 0.132 | 0.111 | 0.048 |
Stage 3 | Jul | 1149 | 1999 | 0.696 | 0.2 | 0.532 | 0.485 | 0.093 | 2000 | 0.804 | 0.22 | 0.572 | 0.577 | 0.120 | 2001 | 0.764 | 0.272 | 0.688 | 0.621 | 0.095 |
Stage 4 | Dec–Mar | 4596 | 1999–2000 | 0.388 | −0.008 | 0.048 | 0.116 | 0.067 | 2000–2001 | 0.384 | −0.060 | 0.028 | 0.100 | 0.065 | 2001–2002 | 0.364 | −0.040 | 0.136 | 0.133 | 0.050 |
Stage 5 | Jun–Jul | 2298 | 2000 | 0.804 | 0.220 | 0.576 | 0.563 | 0.119 | 2001 | 0.764 | 0.072 | 0.688 | 0.541 | 0.162 | 2002 | 0.824 | 0.016 | 0.684 | 0.520 | 0.210 |
Stage 6 | Feb–May | 4596 | 2001 | 0.768 | −0.060 | 0.036 | 0.243 | 0.204 | 2002 | 0.784 | −0.040 | 0.136 | 0.254 | 0.169 | 2003 | 0.744 | −0.036 | 0.144 | 0.266 | 0.192 |
Stage 7 | Jul–Aug | 2298 | 2001 | 0.784 | 0.272 | 0.708 | 0.632 | 0.083 | 2002 | 0.848 | 0.264 | 0.660 | 0.631 | 0.115 | 2003 | 0.828 | 0.300 | 0.704 | 0.662 | 0.076 |
Stage 8 | Jan–Mar | 3447 | 2002 | 0.364 | −0.040 | 0.136 | 0.126 | 0.049 | 2003 | 0.248 | −0.036 | 0.036 | 0.109 | 0.052 | 2004 | 0.276 | 0.008 | 0.148 | 0.150 | 0.035 |
Stage 9 | Feb–Jun | 5745 | 2003 | 0.784 | −0.036 | 0.144 | 0.327 | 0.219 | 2004 | 0.824 | 0.032 | 0.144 | 0.334 | 0.208 | 2005 | 0.816 | −0.024 | 0.028 | 0.338 | 0.246 |
Stage 10 | Mar–Apr | 2298 | 2004 | 0.692 | 0.044 | 0.156 | 0.212 | 0.118 | 2005 | 0.588 | −0.024 | 0.148 | 0.197 | 0.120 | 2006 | 0.532 | 0.024 | 0.152 | 0.184 | 0.088 |
Stage 11 | Mar–Apr | 2298 | 2005 | 0.588 | −0.024 | 0.148 | 0.197 | 0.120 | 2006 | 0.532 | 0.024 | 0.152 | 0.184 | 0.088 | 2007 | 0.664 | −0.024 | 0.136 | 0.204 | 0.103 |
Stage 12 | Nov–Jun | 9192 | 2006–2007 | 0.752 | −0.096 | 0.192 | 0.260 | 0.176 | 2007–2008 | 0.772 | −0.004 | 0.136 | 0.261 | 0.179 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wang, X.; Zhao, Y. Effects of Intermittent Water Allocation on Vegetation Dynamics in Lake Baiyangdian, North China. Water 2021, 13, 1400. https://doi.org/10.3390/w13101400
Wang F, Wang X, Zhao Y. Effects of Intermittent Water Allocation on Vegetation Dynamics in Lake Baiyangdian, North China. Water. 2021; 13(10):1400. https://doi.org/10.3390/w13101400
Chicago/Turabian StyleWang, Fei, Xueke Wang, and Ying Zhao. 2021. "Effects of Intermittent Water Allocation on Vegetation Dynamics in Lake Baiyangdian, North China" Water 13, no. 10: 1400. https://doi.org/10.3390/w13101400
APA StyleWang, F., Wang, X., & Zhao, Y. (2021). Effects of Intermittent Water Allocation on Vegetation Dynamics in Lake Baiyangdian, North China. Water, 13(10), 1400. https://doi.org/10.3390/w13101400