Spatiotemporal Evolution Trajectory of Channel Morphology and Controlling Factors of Yongding River, Beijing, China
Abstract
:1. Introduction
2. Study Area
2.1. General Features
2.2. Climate Variability
2.3. Hydrological and Flood Features
3. Materials and Methods
3.1. Data Treatment
3.2. Reach Segmentation
3.3. Parameter Calculation
4. Results
4.1. Channel Width and Sinuosity Variation
4.2. Channel Migration
4.3. Human Impacts
4.3.1. Water Projects and Ecological Restoration Projects
4.3.2. Sediment Mining
4.3.3. Land Use Change
5. Discussion
5.1. Temporal Analysis
5.2. Spatial Analysis
5.3. River Restoration Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, Z.R. Diversity of river morphology and diversity of bio-communities. J. Hydraul. Eng. 2003, 11, 1–6. [Google Scholar]
- Bollati, I.M.; Pellegrini, L.; Rinaldi, M.; Duci, G.; Pelfini, M. Reach-scale morphological adjustments and stages of channel evolution: The case of the Trebbia River (northern Italy). Geomorphology 2014, 221, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.L.; Li, G.C.; Liu, K.; Zhong, Y.J. Progress on Urban Stream Transformation of Critical Forms and Stability Relationships. Prog. Geogr. 2012, 31, 837–845. [Google Scholar]
- Alessandra, C. Analysis and Modelling of River Meandering, 1st ed.; IOS Press: Amsterdam, The Netherlands, 2008; pp. 22–24. [Google Scholar]
- Bertalan, L.; Rodrigo-Comino, J.; Surian, N.; Sulc Michalkova, M.; Kovacs, Z.; Szabo, S.; Szabo, G.; Hooke, J. Detailed assessment of spatial and temporal variations in river channel changes and meander evolution as a preliminary work for effective floodplain management. The example of Sajo River, Hungary. J. Environ. Manag. 2019, 248, 109277. [Google Scholar] [CrossRef]
- Michalková, M.; Piégay, H.; Kondolf, G.M.; Greco, S.E. Lateral erosion of the Sacramento River, California (1942-1999), and responses of channel and floodplain lake to human influences. Earth Surf. Process. Landf. 2011, 36, 257–272. [Google Scholar] [CrossRef]
- Ta, W.Q.; Jia, X.P.; Wang, H.B. Channel deposition induced by bank erosion in response to decreased flows in the sand-banked reach of the upstream Yellow River. Catena 2013, 105, 62–68. [Google Scholar] [CrossRef]
- Das, A.K.; Sah, R.K.; Hazarika, N. Bankline change and the facets of riverine hazards in the floodplain of Subansiri-Ranganadi Doab, Brahmaputra Valley, India. Nat. Hazards 2012, 64, 1015–1028. [Google Scholar] [CrossRef]
- Gurnell, A.M. Channel change on the River Dee meanders, 1946–1992, from the analysis of air photographs. Regul. Rivers Res. Manag. 1997, 13, 13–26. [Google Scholar] [CrossRef]
- Konsuer, K.M.; Rhoads, B.L.; Langendoen, E.J.; Best, J.L.; Ursic, M.E.; Abad, J.D.; Garcia, M.H. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 2016, 252, 80–97. [Google Scholar] [CrossRef]
- Piégay, H.; Grant, G.; Nakamura, F.; Trustrum, N. Braided River Management: From Assessment of River Behaviour to Improved Sustainable Development, 1st ed.; Blackwell Science: Oxford, UK, 2006; pp. 257–275. [Google Scholar]
- Brierley, G.J.; Fryirs, K.; Outhet, D.; Massey, C. Application of the River Styles framework as a basis for river management in New South Wales, Australia. Appl. Geogr. 2002, 22, 91–122. [Google Scholar] [CrossRef]
- Ziliani, L.; Surian, N. Evolutionary trajectory of channel morphology and controlling factors in a large gravel-bed river. Geomorphology 2012, 173, 104–117. [Google Scholar] [CrossRef]
- Gordon, E.; Meentemeyer, R.K.J.G. Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphology 2006, 82, 412–429. [Google Scholar] [CrossRef]
- Kiss, T.; Fiala, K.; Sipos, G.; Szatmári, G. Long-term hydrological changes after various river regulation measures: Are we responsible for flow extremes? Hydrol. Res. 2019, 50, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Xia, J.; Lu, J.; Deng, S.; Lin, F. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities. Geomorphology 2017, 285, 325–332. [Google Scholar] [CrossRef]
- Malik, S.; Pal, S.C. Is the construction of Groynes accelerating the degradation of channel morphology and paved the way for human encroachment in The Bengal Basin? Adv. Space Res. 2019, 64, 1549–1576. [Google Scholar] [CrossRef]
- Preciso, E.; Salemi, E.; Billi, P. Land use changes, torrent control works and sediment mining: Effects on channel morphology and sediment flux, case study of the Reno River (Northern Italy). Hydrol. Process. 2012, 26, 1134–1148. [Google Scholar] [CrossRef]
- Marston, R.A.; Bravard, J.P.; Green, T. Impacts of reforestation and gravel mining on the Malnant River, Haute-Savoie, French Alps. Geomorphology 2003, 55, 65–74. [Google Scholar] [CrossRef]
- Hajdukiewicz, H.; Wyżga, B.; Mikuś, P.; Zawiejska, J.; Radecki-Pawlik, A. Impact of a large flood on mountain river habitats, channel morphology, and valley infrastructure. Geomorphology 2016, 272, 55–67. [Google Scholar] [CrossRef]
- Yousefi, S.; Mirzaee, S.; Keesstra, S.; Surian, N.; Pourghasemi, H.R.; Zakizadeh, H.R.; Tabibian, S. Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology 2018, 304, 30–39. [Google Scholar] [CrossRef]
- Simon, A.; Thorne, C.R. Channel adjustment of an unstable coarse-grained stream: Opposing trends of boundary and critical shear stress and the applicability of extremal hypotheses. Earth Surf. Process. Landf. 1996, 21, 155–180. [Google Scholar] [CrossRef]
- Amsler, M.L.; Ramonell, C.G.; Toniolo, H.A. Morphologic changes in the Paraná River channel (Argentina) in the light of the climate variability during the 20th century. Geomorphology 2005, 70, 257–278. [Google Scholar] [CrossRef]
- Luchi, R.; Hooke, J.M.; Zolezzi, G.; Bertoldi, W. Width variations and mid-channel bar inception in meanders: River Bollin (UK). Geomorphology 2010, 119, 1–8. [Google Scholar] [CrossRef]
- Baena-Escudero, R.; Rinaldi, M.; García-Martínez, B.; Guerrero-Amador, I.C.; Nardi, L. Channel adjustments in the lower Guadalquivir River (southern Spain) over the last 250 years. Geomorphology 2019, 337, 15–30. [Google Scholar] [CrossRef]
- Musso, N.M.D.; Capolongo, D.; Caldara, M.; Surian, N.; Pennetta, L. Channel Changes and Controlling Factors over the Past 150 Years in the Basento River (Southern Italy). Water 2020, 12, 307. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.L.; Dai, J.B.; Shu, A.P.; Zhang, K.L. Review of River Bank Erosion Research. Adv. Earth Sci. 2013, 28, 988–996. [Google Scholar]
- Uribelarrea, D.; Perez-Gonzalez, A.; Benito, G. Channel changes in the Jarama and Tagus rivers (central Spain) over the past 500 years. Quat. Sci. Rev. 2003, 22, 2209–2221. [Google Scholar] [CrossRef]
- Morais, E.S.; Rocha, P.C.; Hooke, J. Spatiotemporal variations in channel changes caused by cumulative factors in a meandering river: The lower Peixe River, Brazil. Geomorphology 2016, 273, 348–360. [Google Scholar] [CrossRef] [Green Version]
- Garófano-Gómez, V.; Martínez-Capel, F.; Bertoldi, W.; Gurnell, A.; Estornell, J.; Segura-Beltrán, F. Six decades of changes in the riparian corridor of a Mediterranean river: A synthetic analysis based on historical data sources. Ecohydrology 2013, 6, 536–553. [Google Scholar] [CrossRef]
- Yu, M.; Wei, Y.S.; Liu, J.G.; Liu, P.B.; Zhang, Z.M.; Wei, W.; Wang, Y.W.; Zhong, J.; Yang, Y.; Xiao, Q.C.; et al. Impact of socioeconomic development on water resource and water environment of Yongding River in Beijing. Acta Sci. Circumst. 2011, 31, 1817–1825. [Google Scholar]
- Zhang, L.W.; Zhang, L. The Ecological Environment Succession and Management of Yongding River in Beijing. J. Beijing Union Univ. (Humanit. Soc. Sci.) 2017, 15, 118–124. [Google Scholar]
- Zhang, L.P.; Yu, S.Y.; Duan, Y.B.; Shan, L.J.; Chen, X.C.; Xu, Z.X. Quantitative Assessment of the Effects of Climate Change and Human Activities on Runoff in the Yongding River Basin. Clim. Chang. Res. 2013, 9, 391–397. [Google Scholar]
- Zhang, W.L. Effects of Climate Change and Human Activities on Runoff in the Yongding River Basin. Yellow River 2015, 37, 27–30. [Google Scholar]
- Wei, J.; Pan, X.Y.; Kong, G.; Bai, T.; Huang, Q.; Li, B.; Ma, P.P. Study on ecological restoration of water-deficient rivers based on ecological water supplement method. J. Water Resour. Water Eng. 2020, 31, 64–69+76. [Google Scholar]
- Ding, A.Z.; Zhao, Y.J.; Hao, D.; Zhang, S.R.; Qiao, G.J. Analysis of Variation Characteristics of Runoff and Their Influencing Factors in the Yongding River Basin. South-North Water Transf. Water Sci. Technol. 2013, 11, 17–22. [Google Scholar]
- Pan, W.; Xiao, L.B.; Yan, F.F. The Study for Relationship between PDO and the streamflow of Yongdinghe River (Lugouqiao) since 1766AD. J. Chin. Hist. Geogr. 2013, 28, 127–133. [Google Scholar]
- Wang, Y.; Xue, Y.; Du, L.G. Analysis on the flood characteristics in Guanting Valley of Yongding River. Beijing Water 2003, 03, 27–28. [Google Scholar]
- Hughes, M.L.; McDowell, P.F.; Marcus, W.A. Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS. Geomorphology 2006, 74, 1–16. [Google Scholar] [CrossRef]
- Mount, N.J.; Louis, J.; Teeuw, R.M.; Zukowskyj, P.M.; Stott, T. Estimation of error in bankfull width comparisons from temporally sequenced raw and corrected aerial photographs. Geomorphology 2003, 56, 65–77. [Google Scholar] [CrossRef]
- Rust, B.R. A classification of alluvial channel systems. Can. Soc. Pet. Geol. Mem. 1978, 5, 605–625. [Google Scholar]
- Piégay, H.; Darby, S.E.; Mosselman, E.; Surian, N. A review of techniques available for delimiting the erodible river corridor: A sustainable approach to managing bank erosion. River Res. Appl. 2005, 21, 773–789. [Google Scholar] [CrossRef]
- Rosgen, D.L. A Classification of Natural Rivers. Catena 1994, 22, 169–199. [Google Scholar] [CrossRef] [Green Version]
- Editorial Board of Beijing Water Conservancy. Local Records of Water Conservancy in Beijing; China Water & Power Press: Beijing, China, 1989; Volume 3, pp. 234–235. [Google Scholar]
- Zhai, X.D. Discussion on flow regulation of Sanjiadian diversion project in new period. Beijing Water 2018, 4, 41–44. [Google Scholar] [CrossRef]
- Ma, S.P. Study on Ecological Restoration Comprehensive Evaluation Benefit in Mentougou District of Beijing. Master’s Thesis, Beijing Forestry University, Beijing, China, 2011. [Google Scholar]
- Scorpio, V.; Rosskopf, C.M.J.G. Channel adjustments in a Mediterranean river over the last 150 years in the context of anthropic and natural controls. Geomorphology 2016, 275, 90–104. [Google Scholar] [CrossRef]
- Dragićević, S.; Pripužić, M.; Živković, N.; Novković, I.; Kostadinov, S.; Langović, M.; Milojković, B.; Čvorović, Z. Spatial and Temporal Variability of Bank Erosion during the Period 1930–2016: Case Study—Kolubara River Basin (Serbia). Water 2017, 9, 748. [Google Scholar] [CrossRef] [Green Version]
- Lowrance, R.; Williams, R.G.; Inamdar, S.P.; Bosch, D.D.; Sheridan, J.M. Evaluation of coastal plain conservation buffers using the riparian ecosystem management model1. Jawra J. Am. Water Resour. Assoc. 2001, 37, 1445–1455. [Google Scholar] [CrossRef]
Year | Precipitation | Temperature | ||
---|---|---|---|---|
Annual Mean (mm) | Anomaly Percentage (%) | Annual Mean (°C) | Anomaly (°C) | |
1957–1970 | 457 | 7.78 | 4.7 | −0.8 |
1971–1980 | 437 | 3.07 | 5.0 | −0.5 |
1981–1990 | 411 | −3.07 | 5.2 | −0.3 |
1991–2000 | 405 | −4.48 | 6.1 | 0.6 |
2001–2010 | 398 | −6.13 | 6.9 | 1.4 |
Time | Remote Sensing Satellite | Type | Resolution (m) | RMSE (m) |
---|---|---|---|---|
1964–09 | Keyhole-4A | Aerial image, BW | 2.0 | Reference map |
1980–07 | Keyhole-9 | Aerial image, BW | 5.0 | 6.2 |
2004–05 | SPOT-5 | Aerial image, C | 2.5 | 4.1 |
2018–07 | GF-1 | Aerial image, C | 2.0 | 2.5 |
Reach ID | Channel Length (km) | Number of Bends | Longitudinal Slope Ratio of the River Bed (m/km) | Channel Sinuosity | Degree of Human Activity | Number of Surrounding Towns and Villages | Tributaries |
---|---|---|---|---|---|---|---|
R1 | 8.7 | 17 | 4.86 | 1.37 | low | 1 | 0 |
R2 | 19.2 | 37 | 5.26 | 1.93 | medium | 4 | 1 |
R3 | 13.3 | 44 | 8.42 | 3.08 | low | 2 | 4 |
R4 | 10.3 | 26 | 1.46 | 2.23 | medium | 5 | 2 |
R5 | 6.7 | 11 | 5.97 | 1.10 | low | 1 | 1 |
R6 | 18.1 | 46 | 2.60 | 2.98 | high | 9 | 4 |
R7 | 15.6 | 32 | 3.85 | 2.05 | high | 8 | 2 |
1964 | 1980 | 2004 | 2018 | Mean | 1964–1980 (%) | 1980–2004 (%) | 2004–2018 (%) | |
---|---|---|---|---|---|---|---|---|
R1 | 1.38 | 1.40 | 1.36 | 1.37 | 1.38 | 1.45 | −2.86 | −0.74 |
R2 | 1.99 | 1.97 | 1.91 | 1.93 | 1.95 | −1.01 | −3.05 | 1.05 |
R3 | 3.22 | 3.17 | 3.05 | 3.08 | 3.10 | −1.55 | −3.79 | 0.98 |
R4 | 2.21 | 2.19 | 2.20 | 2.22 | 2.21 | −0.90 | 0.46 | 0.91 |
R5 | 1.09 | 1.06 | 1.09 | 1.10 | 1.08 | −1.83 | 1.87 | 0.92 |
R6 | 3.06 | 2.99 | 2.96 | 2.98 | 3.00 | −2.29 | −1.02 | 0.68 |
R7 | 2.07 | 2.08 | 2.04 | 2.05 | 2.06 | 0.48 | −1.92 | 0.49 |
Year | Erosion | Deposition | ||
---|---|---|---|---|
Area (ha) | Rate (ha/year) | Area (ha) | Rate (ha/year) | |
1964–1980 | 208 | 13.0 | 233 | 14.6 |
1980–2004 | 163 | 6.8 | 317 | 13.2 |
2004–2018 | 174 | 12.4 | 205 | 14.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xu, X.; Wu, M.; Liu, Z. Spatiotemporal Evolution Trajectory of Channel Morphology and Controlling Factors of Yongding River, Beijing, China. Water 2021, 13, 1489. https://doi.org/10.3390/w13111489
Li H, Xu X, Wu M, Liu Z. Spatiotemporal Evolution Trajectory of Channel Morphology and Controlling Factors of Yongding River, Beijing, China. Water. 2021; 13(11):1489. https://doi.org/10.3390/w13111489
Chicago/Turabian StyleLi, Hao, Xiaoming Xu, Minghao Wu, and Zhicheng Liu. 2021. "Spatiotemporal Evolution Trajectory of Channel Morphology and Controlling Factors of Yongding River, Beijing, China" Water 13, no. 11: 1489. https://doi.org/10.3390/w13111489
APA StyleLi, H., Xu, X., Wu, M., & Liu, Z. (2021). Spatiotemporal Evolution Trajectory of Channel Morphology and Controlling Factors of Yongding River, Beijing, China. Water, 13(11), 1489. https://doi.org/10.3390/w13111489