Comparison of Sr Transport in Compacted Homoionous Na and Ca Bentonite Using a Planar Source Method Evaluated at Ideal and Non-Ideal Boundary Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Planar Source Diffusion Experiments
2.2. Batch Sorption Experiments
2.3. Evaluation of Planar Source Experiments
3. Results
3.1. Batch Sorption Experiments
3.2. Planar Source Diffusion Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galamboš, M.; Suchánek, P.; Rosskopfová, O. Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J. Radioanal. Nucl. Chem. 2012, 293, 613–633. [Google Scholar] [CrossRef]
- Gautschi, A.; Gaus, I.; Gimmi, T.; Mazurek, M.; Wersin, P.; Cathelineau, M.; Bath, A. Applied geochemistry special issue on “Geochemistry of clays and clay rocks in the context of radioactive waste disposal”. Appl. Geochem. 2019, 105, 127–129. [Google Scholar] [CrossRef]
- Bestel, M.; Glaus, M.A.; Frick, S.; Gimmi, T.; Juranyi, F.; Van Loon, L.R.; Diamond, L.W. Combined tracer through-diffusion of HTO and 22Na through Na-montmorillonite with different bulk dry densities. Appl. Geochem. 2018, 93, 158–166. [Google Scholar] [CrossRef]
- Glaus, M.A.; Aertsens, M.; Appelo, C.; Kupcik, T.; Maes, N.; Van Laer, L.; Van Loon, L. Cation diffusion in the electrical double layer enhances the mass transfer rates for Sr2+, Co2+ and Zn2+ in compacted illite. Geochim. Cosmochim. Acta 2015, 165, 376–388. [Google Scholar] [CrossRef]
- Glaus, M.A.; Baeyens, B.; Bradbury, M.H.; Jakob, A.; Van Loon, L.R.; Yaroshchuk, A. Diffusion of 22Na and 85Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction. Environ. Sci. Technol. 2007, 41, 478–485. [Google Scholar] [CrossRef]
- Samper, J.; Dai, Z.; Molinero, J.; García-Gutiérrez, M.; Missana, T.; Mingarro, M. Inverse modeling of tracer experiments in FEBEX compacted Ca-bentonite. Phys. Chem. Earth Parts A B C 2006, 31, 640–648. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Baborová, L.; Vopálka, D.; Vetešník, A.; Hofmanová, E. Migration behaviour of Strontium in Czech Bentonite Clay. J. Sustain. Dev. Energy Water Environ. Syst. 2016, 4, 293–306. [Google Scholar] [CrossRef]
- Baborová, L.; Vopálka, D.; Červinka, R. Sorption of Sr and Cs onto Czech natural bentonite: Experiments and modelling. J. Radioanal. Nucl. Chem. 2018, 318, 2257–2262. [Google Scholar] [CrossRef]
- Choi, J.-W.; Oscarson, D. Diffusive transport through compacted Na- and Ca-bentonite. J. Contam. Hydrol. 1996, 22, 189–202. [Google Scholar] [CrossRef]
- González Sánchez, F.; Van Loon, L.R.; Gimmi, T.; Jakob, A.; Glaus, M.A.; Diamond, L.W. Self-diffusion of water and its dependence on temperature and ionic strength in highly compacted montmorillonite, illite and kaolinite. Appl. Geochem. 2008, 23, 3840–3851. [Google Scholar] [CrossRef]
- Kozaki, T.; Sawaguchi, T.; Fujishima, A.; Sato, S. Effect of exchangeable cations on apparent diffusion of Ca2+ ions in Na- and Ca-montmorillonite mixtures. Phys. Chem. Earth Parts A/B/C 2010, 35, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Montes, H.G.; Duplay, J.; Martinez, L.; Geraud, Y.; Rousset-Tournier, B. Influence of interlayer cations on the water sorption and swelling-shrinkage of MX80 bentonite. Appl. Clay Sci. 2003, 23, 309–321. [Google Scholar] [CrossRef]
- Pusch, R. Mechanical Properties of Clays and Clay Minerals. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 247–260. [Google Scholar]
- Yu, J.; Neretnieks, I. Diffusion and Sorption Properties of Radionuclides in Compacted Bentonite; SKB-TR-97-12; International Atomic Energy Agency (IAEA): Vienna, Austria, 1997; 104p. [Google Scholar]
- Aldaba, D.; Garcia-Gutierrez, M.; Rigol, A.; Vidal, M. Comparison of laboratory methodologies for evaluating radiostrontium diffusion in soils: Planar-source versus half-cell methods. Sci. Total Environ. 2010, 408, 5966–5971. [Google Scholar] [CrossRef]
- Galamboš, M.; Krajňák, A.; Rosskopfová, O.; Viglašová, E.; Adamcová, R.; Rajec, P. Adsorption equilibrium and kinetic studies of strontium on Mg-bentonite, Fe-bentonite and illite/smectite. J. Radioanal. Nucl. Chem. 2013, 298, 1031–1040. [Google Scholar] [CrossRef]
- Van Loon, L.; Baeyens, B.; Bradbury, M. Diffusion and retention of sodium and strontium in Opalinus clay: Comparison of sorption data from diffusion and batch sorption measurements, and geochemical calculations. Appl. Geochem. 2005, 20, 2351–2363. [Google Scholar] [CrossRef]
- Missana, T.; García-Gutiérrez, M. Adsorption of bivalent ions (Ca(II), Sr(II) and Co(II)) onto FEBEX bentonite. Phys. Chem. Earth 2007, 32, 559–567. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Galamboš, M.; Kufčáková, J.; Rajec, P. Sorption of strontium on Slovak bentonites. J. Radioanal. Nucl. Chem. 2009, 281, 347–357. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, M.A. Sorption of strontium on bentonite. Waste Manag. 1996, 15, 641–650. [Google Scholar] [CrossRef]
- Karnland, O.; Birgersson, M.; Hedström, M. Selectivity coefficient for Ca/Na ion exchange in highly compacted bentonite. Phys. Chem. Earth Parts A B C 2011, 36, 1554–1558. [Google Scholar] [CrossRef]
- Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J.-C.; Gimmi, T.; Maes, N. Diffusion-driven transport in clayrock formations. Appl. Geochem. 2012, 27, 463–478. [Google Scholar] [CrossRef]
- García-Gutiérrez, M.; Missana, T.; Mingarro, M.; Samper, J.; Dai, Z.; Molinero, J. Solute transport properties of compacted Ca-bentonite used in FEBEX project. J. Contam. Hydrol. 2001, 47, 127–137. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, M.; Cormenzana, J.; Missana, T.; Mingarro, M.; Alonso, U.; Samper, J.; Yang, Q.; Yi, S. Diffusion experiments in Callovo-Oxfordian clay from the Meuse/Haute-Marne URL, France. Experimental setup and data analyses. Phys. Chem. Earth Parts A B C 2008, 33, S125–S130. [Google Scholar] [CrossRef]
- Glaus, M.; Aertsens, M.; Maes, N.; Van Laer, L.; Van Loon, L. Treatment of boundary conditions in through-diffusion: A case study of 85Sr2+ diffusion in compacted illite. J. Contam. Hydrol. 2015, 177–178, 239–248. [Google Scholar] [CrossRef]
- Savoye, S.; Beaucaire, C.; Grenut, B.; Fayette, A. Impact of the solution ionic strength on strontium diffusion through the Callovo-Oxfordian clayrocks: An experimental and modeling study. Appl. Geochem. 2015, 61, 41–52. [Google Scholar] [CrossRef]
- Eriksen, T.E.; Jansson, M.; Molera, M. Sorption effects on cation diffusion in compacted bentonite. Eng. Geol. 1999, 54, 231–236. [Google Scholar] [CrossRef]
- Rasmuson, A.; Neretnieks, I. Surface Migration in Sorption Processes; SKBF-KBS-TR-83-37; International Atomic Energy Agency (IAEA): Vienna, Austria, 1983; 54p. [Google Scholar]
- Bourg, I.C.; Sposito, G.; Bourg, A.C. Modeling the diffusion of Na+ in compacted water-saturated Na-bentonite as a function of pore water ionic strength. Appl. Geochem. 2008, 23, 3635–3641. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-T.; Suk, T.-W.; Park, S.-H.; Lee, C.-S. Diffusivities for ions through compacted Na-bentonite with varying dry bulk density. Waste Manag. 1993, 13, 303–308. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide To PHREEQC (version 2)—A Computer Program for Speciation, and Inverse Geochemical Calculations. Water Resour. Investig. Rep. 1999, 99, 326. [Google Scholar]
- Tachi, Y.; Yotsuji, K. Diffusion and sorption of Cs+, Na+, I− and HTO in compacted sodium montmorillonite as a function of porewater salinity: Integrated sorption and diffusion model. Geochim. Cosmochim. Acta 2009, 132, 75–93. [Google Scholar] [CrossRef]
- Ochs, M.; Lothenbach, B.; Wanner, H.; Sato, H.; Yui, M. An integrated sorption-diffusion model for the calculation of consistent distribution and diffusion coefficients in compacted bentonite. J. Contam. Hydrol. 2001, 47, 283–296. [Google Scholar] [CrossRef]
- Ochs, M.; Lothenbach, B.; Shibata, M.; Yui, M. Thermodynamic modeling and sensitivity analysis of porewater chemistry in compacted bentonite. Phys. Chem. Earth Parts A B C 2004, 29, 129–136. [Google Scholar] [CrossRef]
- Bourg, I.C.; Tournassat, C. Self-Diffusion of Water and Ions in Clay Barriers. Dev. Clay Sci. 2015, 6, 189–226. [Google Scholar]
- Melkior, T.; Gaucher, E.; Brouard, C.; Yahiaoui, S.; Thoby, D.; Clinard, C.; Ferrage, E.; Guyonnet, D.; Tournassat, C.; Coelho, D. Na+ and HTO diffusion in compacted bentonite: Effect of surface chemistry and related texture. J. Hydrol. 2009, 370, 9–20. [Google Scholar] [CrossRef]
- Červinka, R.; Vopálka, D.; Adam, R.; Baborová, L.; Brázda, L.; Drtinová, B.; Hofmanová, E.; Kittnerová, J.; Reimitz, D.; Štamberg, K.; et al. Transport of radionuclides from the repository/Input parametres and process models for evaluation of radionuclide transport through engineered barriers (in Czech). SÚRAO Tech. Rep. 2015, 24, 176. [Google Scholar]
- Gondolli, J.; Večerník, P. The uncertainties associated with the application of through-diffusion, the steady-state method: A case study of strontium diffusion. In Clays in Natural and Engineered Barriers for Radioactive Waste Confinement; Geological Society of London: London, UK, 2014; pp. 603–612. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, M.; Cormenzana, J.; Missana, T.; Alonso, U.; Mingarro, M. Diffusion of strongly sorbing cations (60Co and 152Eu) in compacted FEBEX bentonite. Phys. Chem. Earth Parts A B C 2011, 36, 1708–1713. [Google Scholar] [CrossRef]
- García-Gutiérrez, M.; Cormenzana, J.L.; Missana, T.; Mingarro, M.; Molinero, J. Overview of laboratory methods employed for obtaining diffusion coefficients in FEBEX compacted bentonite. J. Iber. Geol. 2006, 32, 37–53. [Google Scholar]
- Golder Associates. GoldSim Contaminant Transport Module, Manual; Version 1.30; GoldSim Technology Group: Redmond, WA, USA, 2002; p. 285. [Google Scholar]
- Kasar, S.; Kumar, S.; Bajpai, R.; Tomar, B. Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay. J. Environ. Radioact. 2016, 151, 218–223. [Google Scholar] [CrossRef]
- Glaus, M.A.; Frick, S.; Van Loon, L.R. Diffusion of Selected Cations and Anions in Compacted Montmorillonite and Bentonite; Technical Report 17-12; Paul Scherrer Institute: Villigen, Switzerland, 2017; 85p. [Google Scholar]
- Shackelford, C.D.; Moore, S.M. Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues. Eng. Geol. 2013, 152, 133–147. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Lee, J.O.; Cho, W.J.; Hahn, P.S.; Lee, K.J. Effect of dry density on Sr-90 diffusion in a compacted Ca-bentonite for a backfill of radioactive waste repository. Ann. Nucl. Energy 1996, 23, 727–738. [Google Scholar] [CrossRef]
- Eriksen, T.E.; Jansson, M. Diffusion of I–, Cs+ and Sr2+ in Compacted Bentonite—Anion Exclusion and Surface Diffusion; SKB TR 96-16; Swedish Nuclear Fuel and Waste Management Co: Stockholm Sweden, 1996. [Google Scholar]
- Bourg, I.; Bourg, A.C.; Sposito, G. Modeling diffusion and adsorption in compacted bentonite: A critical review. J. Contam. Hydrol. 2003, 61, 293–302. [Google Scholar] [CrossRef]
- Gimmi, T.; Kosakowski, G. How mobile are sorbed cations in clays and clay rocks? Environ. Sci. Technol. 2011, 45, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
Material | m/V [kg∙m−3] | Kd × 103 [m3·kg−1] |
---|---|---|
Ca-BaM | 10 | 9.80 ± 0.07 |
50 | 9.29 ± 0.04 | |
100 | 8.97 ± 0.07 | |
Na-BaM | 10 | 49.5 ± 0.9 |
50 | 46.1 ± 0.6 | |
100 | 46.7 ± 0.4 |
Material | k | n | Kd × 103 [m3·kg−1] |
---|---|---|---|
Ca-BaM | 0.0107 | 0.038 | 7.95 ± 0.30 |
Na-BaM | 0.0525 | 0.028 | 42.0 ± 1.6 |
Material | Duration [days] | ρd [kg·m−3] | ε [-] | Da × 1011 (Slope) [m2·s−1] | Da × 1011 (Intercept) [m2·s−1] |
---|---|---|---|---|---|
Ca-BaM | 1 | 1392 | 0.51 | 3.29 ± 0.01 | 3.51 ± 0.03 |
3 | 1356 | 0.51 | 3.95 ± 0.05 | 3.64 ± 0.03 | |
5 | 1367 | 0.52 | 3.47 ± 0.11 | 3.66 ± 0.07 | |
Na-BaM | 1 | 1420 | 0.49 | 2.75 ± 0.03 | 2.91 ± 0.10 |
3 | 1411 | 0.56 | 2.61 ± 0.20 | 2.47 ± 0.27 | |
5 | 1387 | 0.50 | 2.61 ± 0.04 | 2.42 ± 0.02 |
Material | Measured | Calculated According to Equation (8) | |||
---|---|---|---|---|---|
ρd [kg·m−3] | ε [-] | Da × 1011 [m2·s−1] (Slope) | G [-] | Kd × 103 [m3·kg−1] | |
Ca-BaM | 1372 ± 15 | 0.51 ± 0.01 | 3.6 ± 0.2 | 0.50 ± 0.03 valid for Kd = 7.9∙10−3 m3·kg−1 | 3.4 ± 0.3 valid for G = 0.23 |
Na-BaM | 1406 ± 14 | 0.51 ± 0.03 | 2.6 ± 0.2 | 1.91 ± 0.10 valid for Kd = 42∙10−3 m3·kg−1 | 3.5 ± 0.3 valid for G = 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baborová, L.; Viglašová, E.; Vopálka, D. Comparison of Sr Transport in Compacted Homoionous Na and Ca Bentonite Using a Planar Source Method Evaluated at Ideal and Non-Ideal Boundary Condition. Water 2021, 13, 1520. https://doi.org/10.3390/w13111520
Baborová L, Viglašová E, Vopálka D. Comparison of Sr Transport in Compacted Homoionous Na and Ca Bentonite Using a Planar Source Method Evaluated at Ideal and Non-Ideal Boundary Condition. Water. 2021; 13(11):1520. https://doi.org/10.3390/w13111520
Chicago/Turabian StyleBaborová, Lucie, Eva Viglašová, and Dušan Vopálka. 2021. "Comparison of Sr Transport in Compacted Homoionous Na and Ca Bentonite Using a Planar Source Method Evaluated at Ideal and Non-Ideal Boundary Condition" Water 13, no. 11: 1520. https://doi.org/10.3390/w13111520
APA StyleBaborová, L., Viglašová, E., & Vopálka, D. (2021). Comparison of Sr Transport in Compacted Homoionous Na and Ca Bentonite Using a Planar Source Method Evaluated at Ideal and Non-Ideal Boundary Condition. Water, 13(11), 1520. https://doi.org/10.3390/w13111520