A Broad-Scale Method for Estimating Natural Background Levels of Dissolved Components in Groundwater Based on Lithology and Anthropogenic Pressure
Abstract
:1. Introduction
- Monitoring network sampling points that are selected to be representative for a groundwater body, but may not be representative for the NBL calculation.
- Laboratory reporting limits (LRLs) that may not be in the most appropriate ranges for NBL calculation, because they were initially designed to verify compliance with drinking water standards.
2. Methodology
2.1. Background
2.1.1. Reference Concentrations
2.1.2. Censored Data
2.1.3. Uncertainties
2.2. Proposed Methodology
2.3. Groundwater Quality Dataset
2.4. Hydrogeological Characteristics of Sampling Points
2.5. Anthropogenic Pressure
2.6. Statistical Treatments
- Median—Quartile 1 and 3—10th percentile and 90th percentile
- Percentage of quantified data by group in order to assess the weight of unquantified (censored) values in the calculation
2.7. NBL Calculation
3. Results of Methodology Application to Regional Studies
3.1. Groundwater Quality Dataset Construction (Steps 1–9)
3.2. Anthropogenic Pressure (Steps 10–15)
3.2.1. Watershed (Loire-Bretagne)
3.2.2. Individual Analysis
3.2.3. Buffer around the Sampling Point
3.2.4. DRASTIC Method
3.3. Geochemistry (pH, Redox, Lithology) (Steps 13–15)
3.4. NBLs (Steps 16–17)
4. Discussion
4.1. Lithology
4.2. Effects of Physico-Chemical Parameters
4.3. Anthropogenic Effects
4.4. NBLs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Union: Brussels, Belgium, 2000.
- Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the Protection of Groundwater against Pollution and Deterioration; European Union: Brussels, Belgium, 2006.
- Shand, P.; Edmunds, W.M. The Baseline Inorganic Chemistry of European Groundwaters. In Natural Groundwater Quality; Blackwell Publishing: Oxford, UK, 2009; pp. 22–58. [Google Scholar]
- Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on Environmental Quality Standards in the Field of Water Policy; European Union: Brussels, Belgium, 2008.
- Directive 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption; European Union: Brussels, Belgium, 2020.
- Ballesteros-Navarro, B.J.; Díaz-Losada, E.; Domínguez-Sánchez, J.A.; Grima-Olmedo, J. Methodological proposal for conceptualization and classification of interactions between groundwater and surface water. Water Policy 2019, 21, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Directive 2013/39/UE of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy; European Union: Brussels, Belgium, 2013.
- Appelo, C.; Postma, D. Geochemistry, Groundwater and Pollution; Balkema Publishers: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Blum, A.; Pauwels, H.; Wenland, F.; Grifioen, J. Background levels under the Water Framework Directive. In Groundwater Monitoring (Water Quality Measurement Series); John Wiley and Sons: Wiltshire, UK, 2009; pp. 145–153. [Google Scholar]
- Wendland, F.; Blum, A.; Coetsiers, M.; Gorova, R.; Griffioen, J.; Grima, J.; Hinsby, K.; Kunkel, R.; Marandi, A.; Melo, T.; et al. European aquifer typology: A practical framework for an overview of major groundwater composition at European scale. Environ. Earth Sci. 2007, 55, 77–85. [Google Scholar] [CrossRef]
- Hinsby, K.; de Melo, M.T.C.; Dahl, M. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci. Total. Environ. 2008, 401, 1–20. [Google Scholar] [CrossRef]
- Brenot, A.; Gourcy, L.; Mascré, C. Identification des Zones à Risque de Fond Géochimique Élevé en Éléments Traces Dans les Cours D’eau et les Eaux Souterraines; BRGM: Orléans, France, 2007. [Google Scholar]
- Hobiger, G.; Klein, P.; Denk, J.; Grösel, K.; Heger, H.; Kohaut, S.; Kollmann, W.F.H.; Lampl, H.; Lipiarsky, P. Österreichweite Abschätzung von Regionalisierten, Hydro-Chemischen Hintergrundgehalten in Oberflächennahen Grundwasserkörpern auf der Basis Geochemischer und Wasserchem-Ischer Analysedaten zur Umsetzung der Wasserrahmenrichtlinie (Geogene Hintergrundgehalte Oberflächennaher Grundwasserkörper); Geologische Bundesanstalt: Wien, Austria, 2004. [Google Scholar]
- Edmunds, W.; Shand, P.; Hart, P.; Ward, R. The natural (baseline) quality of groundwater: A UK pilot study. Sci. Total Environ. 2003, 310, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Shand, P.; Edmunds, W.M.; Lawrence, A.R.; Smedley, P.L.; Burke, S. The Natural (Baseline) Quality of Groundwater in England and Wales; British Geological Survey: Nottingham, UK, 2007. [Google Scholar]
- Wendland, F.; Berthold, G.; Blum, A.; Elsass, P.; Fritsche, J.-G.; Kunkel, R.; Wolter, R. Derivation of natural background levels and threshold values for groundwater bodies in the Upper Rhine Valley (France, Switzerland and Germany). Desalination 2008, 226, 160–168. [Google Scholar] [CrossRef]
- Molinari, A.; Guadagnini, L.; Marcaccio, M.; Guadagnini, A. Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy. Sci. Total Environ. 2012, 425, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Coetsiers, M.; Blaser, P.; Martens, K.; Walraevens, K. Natural background levels and threshold values for groundwater in fluvial Pleistocene and Tertiary marine aquifers in Flanders, Belgium. Environ. Earth Sci. 2008, 57, 1155–1168. [Google Scholar] [CrossRef]
- Urresti-Estala, B.; Carrasco-Cantos, F.; Vadillo-Pérez, I.; Jiménez-Gavilán, P. Determination of background levels on water quality of groundwater bodies: A methodological proposal applied to a Mediterranean River basin (Guadalhorce River, Málaga, southern Spain). J. Environ. Manag. 2013, 117, 121–130. [Google Scholar] [CrossRef]
- Sellerino, M.; Forte, G.; Ducci, D. Identification of the natural background levels in the Phlaegrean fields groundwater body (Southern Italy). J. Geochem. Explor. 2019, 200, 181–192. [Google Scholar] [CrossRef]
- Busico, G.; Cuoco, E.; Kazakis, N.; Colombani, N.; Mastrocicco, M.; Tedesco, D.; Voudouris, K. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy. Environ. Pollut. 2018, 234, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Rotiroti, M.; Di Mauro, B.; Fumagalli, L.; Bonomi, T. COMPSEC, a new tool to derive natural background levels by the component separation approach: Application in two different hydrogeological contexts in northern Italy. J. Geochem. Explor. 2015, 158, 44–54. [Google Scholar] [CrossRef]
- Nisi, B.; Buccianti, A.; Raco, B.; Battaglini, R. Analysis of complex regional databases and their support in the identification of background/baseline compositional facies in groundwater investigation: Developments and application examples. J. Geochem. Explor. 2016, 164, 3–17. [Google Scholar] [CrossRef]
- Morgenstern, U.; Daughney, C.J. Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification—The National Groundwater Monitoring Programme of New Zealand. J. Hydrol. 2012, 456–457, 79–93. [Google Scholar] [CrossRef]
- Missimer, T.; Teaf, C.M.; Beeson, W.T.; Maliva, R.G.; Woolschlager, J.; Covert, D.J. Natural Background and Anthropogenic Arsenic Enrichment in Florida Soils, Surface Water, and Groundwater: A Review with a Discussion on Public Health Risk. Int. J. Environ. Res. Public Health 2018, 15, 2278. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Shi, Z.; Liu, M.; Wang, G.; Liu, F.; Wang, Y. Identifying anthropogenic sources of groundwater contamination by natural background levels and stable isotope application in Pinggu basin, China. J. Hydrol. 2021, 596, 126092. [Google Scholar] [CrossRef]
- Masciale, R.; Amalfitano, S.; Frollini, E.; Ghergo, S.; Melita, M.; Parrone, D.; Preziosi, E.; Vurro, M.; Zoppini, A.; Passarella, G. Assessing Natural Background Levels in the Groundwater Bodies of the Apulia Region (Southern Italy). Water 2021, 13, 958. [Google Scholar] [CrossRef]
- Guadagnini, L.; Menafoglio, A.; Sanchez-Vila, X. Probabilistic assessment of spatial heterogeneity of natural background concentrations in large-scale groundwater bodies through Functional Geostatistics. Sci. Total Environ. 2020, 740, 140139. [Google Scholar] [CrossRef]
- Kim, K.-H.; Yun, S.-T.; Kim, H.-K.; Kim, J.-W. Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches. J. Geochem. Explor. 2015, 148, 196–205. [Google Scholar] [CrossRef]
- Gao, Y.; Qian, H.; Huo, C.; Chen, J.; Wang, H. Assessing natural background levels in shallow groundwater in a large semiarid drainage Basin. J. Hydrol. 2020, 584, 124638. [Google Scholar] [CrossRef]
- Molinari, A.; Guadagnini, L.; Marcaccio, M. Geostatistical multimodel approach for the assessment of the spatial distribution of natural background concentrations in large-scale groundwater bodies. Water Res. 2019, 149, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Parrone, D.; Frollini, E.; Preziosi, E.; Ghergo, S. eNaBLe, an On-Line Tool to Evaluate Natural Background Levels in Groundwater Bodies. Water 2020, 13, 74. [Google Scholar] [CrossRef]
- Herms, I.; Jódar, J.; Soler, A.; Lambán, L.; Custodio, E.; Núñez, J.; Arnó, G.; Ortego, M.; Parcerisa, D.; Jorge, J. Evaluation of natural background levels of high mountain karst aquifers in complex hydrogeological settings. A Gaussian mixture model approach in the Port del Comte (SE, Pyrenees) case study. Sci. Total Environ. 2021, 756, 143864. [Google Scholar] [CrossRef] [PubMed]
- Serianz, L.; Cerar, S.; Šraj, M. Hydrogeochemical characterization and determination of natural background levels (NBL) in groundwater within the main lithological units in Slovenia. Environ. Earth Sci. 2020, 79. [Google Scholar] [CrossRef]
- Brielmann, H.; Legerer, P.; Schubert, G.; Wemhöner, U.; Philippitsch, R.; Humer, F.; Zieritz, I.; Rosmann, T.; Schartner, C.; Scheidleder, A.; et al. Hydrochemie und Hydrogeologie der Österreichischen Grundwässer und Deren Natürliche Metall- und Nährstoffgehalte (Update Geohint 2018); Bundesministerium für Nachhaltigkeit und Tourismus: Wien, Austria, 2018. [Google Scholar]
- Lions, J.; Mauffert, A.; Devau, N. Evaluation des Concentrations de Rérérence des Fonds Hydrogéochimiques des Eaux Souterraines par Lithologie D’aquifères; BRGM: Orléans, France, 2016. [Google Scholar]
- Voutchkova, D.; Ernstsen, V.; Schullehner, J.; Hinsby, K.; Thorling, L.; Hansen, B. Roadmap for Determining Natural Background Levels of Trace Metals in Groundwater. Water 2021, 13, 1267. [Google Scholar] [CrossRef]
- Cruz, J.V.; Pacheco, D.; Cymbron, R.; Mendes, S. Monitoring of the groundwater chemical status in the Azores archipelago (Portugal) in the context of the EU water framework directive. Environ. Earth Sci. 2010, 61, 173–186. [Google Scholar] [CrossRef]
- Mezga, K. Natural Hydrogeochemical Background and Dynamics of Groundwater in Slovenia. Ph.D. Thesis, University of Nova Gorica, Nova Gorica, Slovenia, 2014. [Google Scholar]
- Grima, J.; Luque-Espinar, J.A.; Mejía, J.A.; Rodríguez, R. Methodological approach for the analysis of groundwater quality in the framework of the Groundwater Directive. Environ. Earth Sci. 2015, 74, 4039–4051. [Google Scholar] [CrossRef]
- Preziosi, E.; Giuliano, G.; Vivona, R. Natural background levels and threshold values derivation for naturally As, V and F rich groundwater bodies: A methodological case study in Central Italy. Environ. Earth Sci. 2010, 61, 885–897. [Google Scholar] [CrossRef]
- Alcaine, A.A.; Schulz, C.; Bundschuh, J.; Jacks, G.; Thunvik, R.; Gustafsson, J.-P.; Mörth, C.-M.; Sracek, O.; Ahmad, A.; Bhattacharya, P. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Sci. Total Environ. 2020, 715, 136671. [Google Scholar] [CrossRef] [PubMed]
- Helsel, D.R.; Hirsch, R.M. Techniques of Water-Resources Investigations of the United States Geological Survey. Hydrologic Analysis and Interpretation: Statistical Methods in Water Resources. Environ. Sci. Pollut. Res. Int. 2002, 14, 297–307. [Google Scholar]
- Antweiler, R.C. Evaluation of Statistical Treatments of Left-Censored Environmental Data Using Coincident Uncensored Data Sets. II. Group Comparisons. Environ. Sci. Technol. 2015, 49, 13439–13446. [Google Scholar] [CrossRef]
- Palarea-Albaladejo, J.; Martín-Fernández, J.A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 2015, 143, 85–96. [Google Scholar] [CrossRef]
- Guigues, N.; Lepot, B.; Desenfant, M.; Durocher, J. Estimation of the measurement uncertainty, including the contribution arising from sampling, of water quality parameters in surface waters of the Loire-Bretagne river basin, France. Accredit. Qual. Assur. 2020, 25, 281–292. [Google Scholar] [CrossRef]
- Ghestem, J.P. Incertitudes Liées à L’échantillonnage: Exemples D’estimation sur eau de Surface et eau Souterraine, Aquaref. Available online: https://www.aquaref.fr/ (accessed on 20 March 2021).
- Corine Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 (accessed on 20 March 2021).
- Troldborg, L. Afgrænsning af de Danske Grundvandsforekomster: Ny Afgrænsning og Delkarakterisering Samt Fagligt Grundlag for Udpegning af Drikkevandsforekomster; GEUS Rapport 2020/1; Geological Survey of Denmark and Greenland (GEUS): Copenhagen, Denmark, 2020; p. 82. (In Danish) [Google Scholar]
- Corine Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 20 March 2021).
- Schubert, G.; Lampl, H.; Shadlau, S.; Wurm, M.; Pavlik, W.; Pestal, G.; Bayer, I.; Freiler, M.; Schild, A.; Stöckl, W. Hydroge-ologische Karte von Österreich 1:500,000; Geologische Bundesanstalt: Wien, Austria, 2003. [Google Scholar]
- Pantić, T.P.; Veljković, Ž.; Tomić, M.; Samolov, K. Hydrogeology and vulnerability of groundwater to polluting in the area of national park “Fruška Gora”. VODOPRIVREDA 2017, 49, 288–290. [Google Scholar]
- Veljković, Ž.; Pantić, T.P.; Tomić, M.; Mandić, M.; Samolov, K. Vulnerability of groundwater pollutants in the area of national park “Fruška Gora”. In Proceedings of the XXIV International Conference Eco-Ist, Vrnjačka Banja, Serbia, 12–15 June 2016; pp. 464–470. [Google Scholar]
- Buser, S. Geological Map of Slovenia in the Scale of 1:250,000; GeoZS: Ljubljana, Slovenia, 2010. [Google Scholar]
- Hansen, B.; Thorling, L. Kemisk Grundvandskortlægning (Geo-Vejledning No. 2018/2); GEUS: Copenhagen, Denmark, 2018. [Google Scholar]
- Lions, J.; Malcuit, E.; Gourcy, L.; Voutchkova, D.; Hansen, B.; Schullehner, J.; Forcada, E.G.; Olmedo, J.G.; Elster, D.; Camps, V.; et al. HOVER Deliverable 3.3—Data Set of the Results of the Statistical Data Treatment Allowing the Preparation of the Raw Elements for the Tasks 4 and 5 i.e., Concentrations of Elements of Natural Origin Per Typologies; Orléans, France. 2021. Available online: https://repository.europe-geology.eu/egdidocs/hover/hover_33_statistical_data_treatment_backgroundlev.pdf (accessed on 28 May 2021).
- Devau, N.; Lions, J.; Schomburgk, S.; Bertin, C.; Blanc, P.; Mathurin, F.; Thinon-Larminach, M.; Lucassou, F.; Le Guern, C.; Tourlière, B.; et al. Etude par Approche Globale des Fonds Hydrogéochimiques des Eaux Souterraines Sur Le Bassin Loire-Bretagne; BRGM: Orléans, France, 2017. [Google Scholar]
- Aller, L.; Bennet, T.; Lehr, J.; Petty, R.; Hackett, G. DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeologic Settings; U.S. EPA: Chicago, IL, USA, 1985.
- Ramsay, L.; Petersen, M.M.; Hansen, B.; Schullehner, J.; van der Wens, P.; Voutchkova, D.; Kristiansen, S.M. Drinking Water Criteria for Arsenic in High-Income, Low-Dose Countries: The Effect of Legislation on Public Health. Environ. Sci. Technol. 2021, 55, 3483–3493. [Google Scholar] [CrossRef]
- Dalmacija, B.; Bečelić-Tomin, M.; Krčmar, D.; Lazić, N. Water. In Environment in Autonomous Province of Vojvodina; Provincial Secretariat for Urbanism, Construction and Environmental Protection: Novi Sad, Serbia, 2011; pp. 94–135. [Google Scholar]
- Jovanović, D.; Jakovljević, B.; Rašić-Milutinović, Z.; Paunović, K.; Peković, G.; Knežević, T. Arsenic occurrence in drinking water supply systems in ten municipalities in Vojvodina Region, Serbia. Environ. Res. 2011, 111, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Petrović, T.; Zlokolica-Mandić, M.; Veljković, N.; Papić, P.; Poznanović, M.; Stojković, J.; Magazinović, S. Macro- and micro-elements in bottled and tap waters of Serbia. Hem. Ind. 2012, 66, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Griffioen, J.; Passier, H.F.; Klein, J. Comparison of Selection Methods to Deduce Natural Background Levels for Groundwater Units. Environ. Sci. Technol. 2008, 42, 4863–4869. [Google Scholar] [CrossRef] [PubMed]
- Edmunds, W.M.; Shand, P. Natural Groundwater Quality; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- Tedd, K.; Coxon, C.; Misstear, B.; Daly, D.; Craig, M.; Mannix, A.; Williams, T.H. Research 183: Assessing and Developing Natural Background Levels for Chemical Parameters in Irish Groundwater; Environmental Protection Agency: Dublin, Ireland, 2017. [Google Scholar]
- Agència Catalana de l’Aigua (ACA). Pla de Gestió del Districte de la Conca Fluvial de Catalunya: Període 2016–2021; Agència Catalana de l’Aigua: Barcelona, Spain, 2015.
- Binda, G.; Pozzi, A.; Livio, F.; Piasini, P.; Zhang, C. Anomalously high concentration of Ni as sulphide phase in sediment and in water of a mountain catchment with serpentinite bedrock. J. Geochem. Explor. 2018, 190, 58–68. [Google Scholar] [CrossRef]
- Hossain, M.; Patra, P.K. Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types. Environ. Pollut. 2020, 258, 113646. [Google Scholar] [CrossRef] [PubMed]
- Cinti, D.; Poncia, P.; Brusca, L.; Tassi, F.; Quattrocchi, F.; Vaselli, O. Spatial distribution of arsenic, uranium and vanadium in the volcanic-sedimentary aquifers of the Vicano–Cimino Volcanic District (Central Italy). J. Geochem. Explor. 2015, 152, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.; Sonnenborg, T.O.; Møller, I.; Bernth, J.D.; Høyer, A.-S.; Rasmussen, P.; Sandersen, P.B.; Jørgensen, F. Nitrate vulnerability assessment of aquifers. Environ. Earth Sci. 2016, 75, 999. [Google Scholar] [CrossRef] [Green Version]
- Lopez, B.; Ollivier, P.; Togola, A.; Baran, N.; Ghestem, J.-P. Screening of French groundwater for regulated and emerging contaminants. Sci. Total Environ. 2015, 518–519, 562–573. [Google Scholar] [CrossRef] [PubMed]
DW Standards | GW-TV | |||
---|---|---|---|---|
Unit (µg/L) | Austria, France, Spain, Slovenia | Denmark | Serbia c | |
As | 10 (5) a | 10 | 5 | 10 |
Cd | 5 | 5 | 0.5 | 3 |
Cr | 50 | 50 | 25 | 50 |
Cu | 2000 | 2000 | 100 | 2000 |
Ni | 20 | 20 | 10 | 20 |
Zn | 5000 b | not defined (5000–France) | 100 | 3000 |
F | 1500 | 1500 | 1500 | 1200 |
SO4 | 250,000 | 250,000 | 250,000 |
Area | Reference Period | Sampling Points/Analyses | Land Use and Prevailing Pressure (Methodology) | Lithologies (Methodology and Classes) | LOQ Treatment (Methodology) | Data Source |
---|---|---|---|---|---|---|
Loire- Bretagne basin, France (155,000 km2) | 2009–2020 | 4200/78559 | Watershed approach based on ”TAUDEM” module, CLC 2012 [48] completed by inventories (agricultural uses: Agreste; industrial location: ICPE, BASIAS, BASOL; mining inventory: SIG Mines) | Sampling point link to BDLisa (1:50 000) simplified lithology: sedimentary:(carbonate, gravel, sand), crystalline, metamorphic, and volcanic | Substituted value with LOQ/2—high LOQ removed. | ADES |
Nationwide Denmark (42,933 km2) | 2009–2018 | 6388/125106 | Buffer of 1 km, pressures extracted from CLC 2012 [48] | Sampling point link to the groundwater bodies delineated based on the DK model [49]. simplified lithology: sedimentary:(carbonate, sand) | Values < LOD substituted with LOQ/2, where LOQ = 3*LOD. High LOD removed | JUPITER |
Nationwide, Austria (83,879 km2) | 2010–2020 | 2024/604353 | Point data (10 m buffer) pressures extracted from CLC 2018 [50] | Derived from national hydrogeological map (1:500.000) [51] simplified lithology: sedimentary: gravel, metamorphic | Values < LOD or LOQ substituted with LOD/2 or LOQ/2 | WISA |
Internal basins of Catalonia (Spain) (32,108 km2) | 1994–2018 (long period due to low number of data available) | 1336/8316 | Buffer of 1 km, pressures extracted from CLC 2018 [50] | Aquifer map produced by the ACA (1: 50.000); simplified lithology: crystalline rocks and sedimentary: carbonate. | ”Log-Ratio EM Algorithm” method with the lrEM function (zCompositions v1.3.4) [45] or the Wilcoxon transformation method applied by calculating < LOD/2. | SDIM-ACA |
Mountain Fruška Gora (Serbia) | 2006–2017 | 33/132 | Drastic vulnerability map, pressures extracted from CLC 2006 [52,53] | Simplified lithology: sedimentary: sand (quaternary deposits). | Values < LOD substituted with LOD/2 | Studies |
Nationwide, Slovenia (20,271 km2) | 2016 | 203/2848 | Water body pressure and land use from the National Water Management Plan 2016–2021 | Lithostratigraphy according to Basic Geological Map (1:100.000 and 1:250.000) [54] and points linked to 21 groundwater bodies. Simplified lithology: sedimentary:(carbonate, sands) | Values < LOQ substituted with LOQ/2 | ARSO |
Spain, Duero River Basin (78,859 km2) | 2010–2020 | 465/6457 | Point data (1 km buffer) pressures extracted from CLC 2018 [50] | Simplified lithology: metamorphic and sedimentary: others (Cenozoic) | Values < LOQ substituted with LOQ/2 | IGME |
pH Type (n = 3) | Redox Types (n = 3) |
---|---|
Acidic (pH < 7) | Oxic or anoxic (A, B redox types) |
Neutral (pH ∈ [7, 7.5]) | Weakly or strongly reduced (C, D redox types) |
Basic (pH > 7.5) | Mixed (X redox type) |
REDOX TYPE | Redox Condition | NO3- mg/L | Fe mg/L | O2 mg/L | SO4 mg/L |
---|---|---|---|---|---|
A | Oxic water | >1 | <0.2 | ≥1 | - |
B | Nitrate-reducing anoxic water | >1 | <0.2 | <1 | - |
C | Weakly reduced water | ≤1 | ≥0.2 | - | ≥20 |
D | Strongly reduced | ≤1 | ≥0.2 | - | <20 |
DK | SR | SI | FR | DK | Cat | SI | FR | A | FR | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | NBL | n | NBL | n | NBL | n | NBL | n | NBL | n | NBL | n | NBL | n | NBL | n | NBL | n | NBL | |
As (µg/L) | 3639 | 6.8 | 24 | 29 | <0.5 | 343 | 1.46 | 1830 | 3.9 | 124 | 3.5 | <0.5 | 554 | 3 | 1168 | 1.1 | 33 | 5 | ||
Cd (µg/L) | 259 | 0.01 | 24 | <1 | 9 | 0.01 | 221 | <0.5 | 77 | 0.03 | _ | _ | 51 | <0.5 | 723 | <0.5 | 135 | 0.1 | 723 | <0.5 |
Cr (µg/L) | 186 | 0.2 | 13 | 20.3 | 9 | 2.4 | 5 | <0.45 | 55 | 0.18 | _ | _ | 51 | 0.5 | 17 | <0.4 | 673 | 0.6 | <5 | _ |
Cu (µg/L) | 218 | 1 | 15 | 4.6 | 9 | 1.3 | 39 | 4.4 | 67 | 1.3 | 229 | 8 | 51 | 0.6 | 131 | 3.1 | 126 | 2.2 | 9 | 1.4 |
Ni (µg/L) | 3661 | 1.8 | 14 | 6.3 | 9 | 3.3 | 231 | 2.3 | 1856 | 5.3 | _ | _ | 51 | 0.5 | 375 | 2.8 | 135 | 0.5 | 27 | 7.8 |
Zn (µg/L) | 271 | 8.1 | 19 | 41 | 9 | 380 | 38 | 12.3 | 85 | 20 | 235 | 99 | 51 | 4.5 | 133 | 24 | _ | _ | 10 | 65 |
F (mg/L) | 4046 | 0.4 | 24 | 0.3 | <0.1 | 388 | 0.9 | 2213 | 1.2 | _ | _ | <0.1 | 673 | 0.3 | _ | _ | 51 | 0.2 | ||
SO4 (mg/L) | 3642 | 87 | 24 | 35.8 | 9 | 16 | 394 | 69.9 | 1834 | 89 | 8 | 60 | 47 | 8.2 | 686 | 44 | _ | _ | 52 | 56 |
Sedimentary: Others | Crystalline Rocks | Metamorphic Rocks | Volcanic Rocks | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SI | DRB | Cat | FR | DRB | A | FR | FR | |||||||||
n | NBL | n | NBL | n | NBL | n | NBL | n | NBL | n | NBL | n | NBL | n | NBL | |
As (µg/L) | _ | _ | 202 | 8.1 | 90 | 4.2 | 336 | 3.6 | 16 | 3.3 | 53 | 3.4 | 1321 | 6.7 | 373 | 2.4 |
Cd (µg/L) | 22 | 0.02 | 203 | 0.025 | _ | _ | 380 | <0.5 | 16 | <0.05 | 35 | 0.04 | 1437 | <0.5 | 378 | <0.5 |
Cr (µg/L) | 22 | 2 | _ | _ | _ | _ | 31 | <0.5 | _ | _ | 50 | 0.5 | 123 | <0.5 | 21 | 1 |
Cu (µg/L) | 22 | 0.7 | 203 | 2.7 | 237 | 10.8 | 25 | 9.6 | 16 | < 5 | 34 | 0.5 | 95 | 11 | 13 | <1 |
Ni (µg/L) | 22 | 15 | _ | _ | _ | _ | 211 | 5.1 | _ | _ | 35 | 0.5 | 741 | 5 | 139 | 0.3 |
Zn (µg/L) | 22 | 27 | _ | _ | 234 | 44.8 | 40 | 23.8 | _ | _ | _ | _ | 139 | 40.4 | 19 | <5 |
F (mg/L) | _ | _ | 197 | 0.95 | _ | _ | 318 | 0.1 | 16 | 0.27 | _ | _ | 1146 | 0.1 | 310 | 0.2 |
SO4 (mg/L) | 22 | 15.6 | 203 | 100.3 | 43 | 33.8 | 383 | 24 | 16 | 30.9 | _ | _ | 1469 | 18 | 392 | 7.3 |
SI | FR | Cat | DRB | A | |
---|---|---|---|---|---|
As | Significant differences between natural state and anthropogenic influences (agriculture, urban, industrial, mining) | Significant differences between natural state and anthropogenic influences (mining) | No significant differences between anthropogenic influences and natural state | ||
Cd | No significant differences between anthropogenic influences and natural state | Significant differences between natural state and anthropogenic influences (agricultural, industrial, and urban) | |||
Cr | Significant differences between anthropogenic influences and natural state | Significant differences between natural state and anthropogenic influences (industrial and urban) | |||
Cu | Significant differences between anthropogenic influences and natural state | Significant differences between natural state and anthropogenic influences (mining) | Significant differences between natural state and anthropogenic influences (mining) | Significant differences between natural state and anthropogenic influences (agricultural, industrial, and urban) | |
Ni | Significant differences between anthropogenic influences and natural state | Significant differences between natural state and anthropogenic influences (agriculture) | Significant differences between natural state and anthropogenic influences (agricultural, industrial, and urban) | ||
Zn | Significant differences between anthropogenic influences and natural state | Significant differences between natural state and anthropogenic influences (agriculture, urban, industrial) | No significant differences between anthropogenic influences and natural state | ||
F | Significant differences between natural state and anthropogenic influences (urban) | Significant differences between anthropogenic influences and natural state | |||
SO4 | Significant differences between anthropogenic influences and natural state | Significant differences between natural state and anthropogenic influences (urban) | Significant differences between natural state and anthropogenic influences (agriculture, urban, industrial, mining) | Significant differences between anthropogenic influences and natural state | Significant differences between anthropogenic influences and natural state |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lions, J.; Devau, N.; Elster, D.; Voutchkova, D.D.; Hansen, B.; Schullehner, J.; Petrović Pantić, T.; Samolov, K.A.; Camps, V.; Arnó, G.; et al. A Broad-Scale Method for Estimating Natural Background Levels of Dissolved Components in Groundwater Based on Lithology and Anthropogenic Pressure. Water 2021, 13, 1531. https://doi.org/10.3390/w13111531
Lions J, Devau N, Elster D, Voutchkova DD, Hansen B, Schullehner J, Petrović Pantić T, Samolov KA, Camps V, Arnó G, et al. A Broad-Scale Method for Estimating Natural Background Levels of Dissolved Components in Groundwater Based on Lithology and Anthropogenic Pressure. Water. 2021; 13(11):1531. https://doi.org/10.3390/w13111531
Chicago/Turabian StyleLions, Julie, Nicolas Devau, Daniel Elster, Denitza D. Voutchkova, Birgitte Hansen, Jörg Schullehner, Tanja Petrović Pantić, Katarina Atanasković Samolov, Victor Camps, Georgina Arnó, and et al. 2021. "A Broad-Scale Method for Estimating Natural Background Levels of Dissolved Components in Groundwater Based on Lithology and Anthropogenic Pressure" Water 13, no. 11: 1531. https://doi.org/10.3390/w13111531
APA StyleLions, J., Devau, N., Elster, D., Voutchkova, D. D., Hansen, B., Schullehner, J., Petrović Pantić, T., Samolov, K. A., Camps, V., Arnó, G., Herms, I., Rman, N., Cerar, S., Grima, J., Giménez-Forcada, E., Luque-Espinar, J. A., Malcuit, E., & Gourcy, L. (2021). A Broad-Scale Method for Estimating Natural Background Levels of Dissolved Components in Groundwater Based on Lithology and Anthropogenic Pressure. Water, 13(11), 1531. https://doi.org/10.3390/w13111531