Erosion Transportation Processes as Influenced by Gully Land Consolidation Projects in Highly Managed Small Watersheds in the Loess Hilly–Gully Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Principle and Scale Design
2.2.1. Rainfall Runoff on Slope
2.2.2. Gully Water Movement
2.2.3. Erosion and Sediment Transport
Start of Sediment Particles
Movement of Bed Load
Suspended Load Movement
Deformation of the Bed Surface
Infiltration Problems
2.2.4. Scale Derivation
Geometric Similarity
Movement Similarity
Dynamics Similarity
2.3. The Designed Rainfall
2.4. The Designed Land Consolidation
2.5. Data Collection
3. Results
3.1. Determination of Pollutant Scale and Verification
3.2. The Impact of Vegetation Restoration on Erosion Transport in Small Watersheds
3.2.1. The Impacts of Vegetation Restoration on Runoff Generation and Collection
3.2.2. The Impact of Vegetation Restoration on Eroded Sediment Generation
3.2.3. The Impact of Vegetation Restoration on the Relationship between Runoff and Sediment Generation
3.3. The Influence of Land Consolidation on Erosion Transport
3.3.1. The Impacts on Runoff and Sediment Generation
3.3.2. The Impact on Pollutant Transport
4. Discussion
4.1. Physical Scale Model Simulation
4.2. The Determination of Pollutant Scale
4.3. Increasing Erosion and Changes in Runoff Generation-Collection Mechanisms in Highly Managed Watersheds under Extreme Rainstorm Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Yang, L.; Wei, W.; Wang, Z.; Mo, B.; Cai, G. Towards Sustainable Integrated Watershed Ecosystem Management: A Case Study in Dingxi on the Loess Plateau, China. Environ. Manag. 2013, 51, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.Y.; Qian, H.; Wu, J.H. Environment: Accelerate research on land creation. Nature 2014, 510, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Kim, D.G.; Li, M.Y.; Huang, C.B.; Liu, Q.Y.; Cheng, M.; Shangguan, Z.P.; Peng, C.H. Land-use changes driven by ‘Grain for Green’ program reduced carbon loss induced by soil erosion on the Loess Plateau of China. Glob. Planet. Chang. 2019, 177, 101–115. [Google Scholar] [CrossRef]
- Li, P.Y.; Chen, Y.J.; Hu, W.H.; Li, X.; Yu, Z.R.; Liu, Y.H. Possibilities and requirements for introducing agri-environment measures in land consolidation projects in China, evidence from ecosystem services and farmers’ attitudes. Sci. Total Environ. 2019, 650, 3145–3155. [Google Scholar] [CrossRef]
- Li, Y.R.; Li, Y.; Fan, P.C.; Long, H.L. Impacts of land consolidation on rural human-environment system in typical watershed of the Loess Plateau and implications for rural development policy. Land Use Policy 2019, 86, 339–350. [Google Scholar]
- Jin, Z.; Guo, L.; Wang, Y.Q.; Yu, Y.L.; Lin, H.; Chen, Y.P.; Chu, G.C.; Zhang, J.; Zhang, N.P. Valley reshaping and damming induce water table rise and soil salinization on the Chinese Loess Plateau. Geoderma 2019, 339, 115–125. [Google Scholar] [CrossRef]
- He, C.X. The situation, characteristics and effect of the gully reclamation project in Yan’an. Environ. Earth Sci. 2015, 6, 255–260, (In Chinese with English abstract). [Google Scholar]
- Jin, Z. The creation of farmland by gully filling on the Loess Plateau: A double-edged sword. Environ. Sci. Technol. 2014, 48, 883–884. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, Y.Q.; Zhang, J.; Chen, Y.P. Filling gullies to create farmland on the Loess Plateau. Environ. Sci. Technol. 2013, 47, 7589–7590. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, Y.H. Environment: China’s land creation project stands firm. Nature 2014, 511, 410. [Google Scholar] [CrossRef]
- Liu, Y.S.; Guo, Y.J.; Li, Y.R.; Li, Y.H. GIS-based effect assessment of soil erosion before and after gully land consolidation: A case study of Wangjiagou project region, Loess Plateau. Chin. J. Geogr. Sci. 2015, 25, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.S.; Li, Y.R. Engineering philosophy and design scheme of gully land consolidation in Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2017, 10, 1–9. [Google Scholar]
- Munnangi, A.K.; Lohani, B.; Misra, S.C. A review of land consolidation in the state of Uttar Pradesh, India: Qualitative approach. Land Use Policy 2020, 90, 104309. [Google Scholar] [CrossRef]
- Hiironen, J.; Riekkinen, K. Agricultural impacts and profitability of land consolidations. Land Use Policy 2016, 55, 309–317. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Wen, Q.; Li, Y. The Transformation of agricultural development towards a sustainable future from an evolutionary view on the Chinese Loess Plateau: A Case Study of Fuxian County. Sustainability 2014, 6, 3644–3668. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Hu, F.N.; Abd Elbasit, M.A.M.; Zheng, F.L.; Liu, P.L.; Xiao, H.; Zhang, Q.; Zhang, J.Q. Holocene erosion triggered by climate change in the central Loess Plateau of China. Catena 2018, 160, 103–111. [Google Scholar] [CrossRef]
- Lei, N.; Mu, X.M. Analysis on effect of gully control and land reclamation projects on carbon emission in hilly and gully regions of Loess Plateau. J. Agro-Environ. Sci. 2018, 2, 392–398. [Google Scholar]
- Chen, Y.P.; Wu, J.H.; Wang, H.; Ma, J.F.; Su, C.C.; Wang, K.B.; Wang, Y. Evaluating the soil quality of newly created farmland in the hilly and gully region on the Loess Plateau, China. J. Geogr. Sci. 2019, 5, 791–802. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.P.; Zhang, Y. Sustainable Model of Rural Vitalization in Hilly and Gully Region on Loess Plateau. Bull. Chin. Acad. Sci. 2019, 6, 708–716. [Google Scholar]
- Wei, O.Y.; Hao, F.H.; Skidmore, A.K.; Toxopeus, A.G. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River. Sci. Total Environ. 2010, 409, 396–403. [Google Scholar]
- Zhang, X.B.; Jin, Z. Gully land consolidation project in Yan’an is inheritance and development of wrap land dam project on the Loess Plateau. J. Earth Environ. 2015, 4, 261–264. [Google Scholar]
- Zhang, X.B.; Vries, W.T.; Li, G.; Ye, Y.M.; Zheng, H.Y.; Wang, M.R. A behavioral analysis of farmers during land reallocation processes of land consolidation in China: Insights from Guangxi and Shandong provinces. Land Use Policy 2019, 89, 104230. [Google Scholar] [CrossRef]
- Li, W.J.; Gao, X.; Wang, R.; Du, L.L.; Hou, F.B.; He, Y.; Hu, Y.X.; Yao, L.G.; Guo, S.L. Soil redistribution reduces integrated C sequestration in soil-plant ecosystems: Evidence from a five-year topsoil removal and addition experiment. Geoderma 2020, 377, 114593. [Google Scholar] [CrossRef]
- Sun, P.C.; Wu, Y.P.; Yang, Z.F.; Sivakumar, B.; Qiu, L.J.; Liu, S.G.; Cai, Y.P. Can the Grain-for-Green program really ensure a low sediment load on the chinese Loess Plateau? Engineering 2019, 5, 855–864. [Google Scholar] [CrossRef]
- Jiang, G.H.; Wang, X.P.; Yun, W.J.; Zhang, R.J. A new system will lead to an optimal path of land consolidation spatial management in China. Land Use Policy 2015, 42, 27–37. [Google Scholar]
- Jiang, G.H.; Zhang, R.J.; Ma, W.Q.; Zhou, D.Y.; Wang, X.P.; He, X. Cultivated land productivity potential improvement in land consolidation schemes in Shenyang, China: Assessment and policy implications. Land Use Policy 2017, 68, 80–88. [Google Scholar] [CrossRef]
- Lou, X.Y.; Gao, J.E.; Han, S.Q.; Guo, Z.H.; Yin, Y. Influence of land consolidation engineering of gully channel on watershed runoff yield and concentration in Loess Hilly and Gully Region. Water Resour. Power 2016, 10, 23–27. [Google Scholar]
- Sun, P.C.; Gao, J.E.; Han, S.Q.; Yin, Y.; Zhou, M.F.; Han, J.Q. Simulation study on the effects of typical gully land consolidation on runoff-sediment-nitrogen emissions in the loess hilly-gully region. J. Agro-Environ. Sci. 2017, 6, 1177–1185. [Google Scholar]
- Kang, Y.C.; Gao, J.E.; Shao, H.; Zhang, Y.Y. Quantitative analysis of hydrological responses to climate variability and land-use change in the hilly-gully region of the Loess Plateau, China. Water 2020, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Dou, S.H.; Gao, J.E.; Li, X.H.; Gao, Z.; Liu, S.X.; Zhou, F.F. Drainage design of channel land consolidation project in gully areas of Loess Hilly Region. Bull. Soil Water Conserv. 2020, 3, 310–316. [Google Scholar]
- Janus, J.; Markuszewska, I. Land consolidation—A great need to improve effectiveness. A casestudy from Poland. Land Use Policy 2017, 65, 143–153. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Forty years later: Assessment of the long-lasting effectiveness of land consolidation projects. Land Use Policy 2019, 83, 22–31. [Google Scholar] [CrossRef]
- Guo, B.B.; Fang, Y.L.; Jin, X.B.; Zhou, Y.K. Monitoring the effects of land consolidation on the ecological environmental quality based on remote sensing: A case study of Chaohu Lake Basin, China. Land Use Policy 2020, 95, 104569. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Zhao, W.; Gu, X.K. Changes resulting from a land consolidation project (LCP) and its resource-environment effects: A case study in Tianmen City of Hubei Province, China. Land Use Policy 2014, 40, 74–82. [Google Scholar] [CrossRef]
- Gao, J.E.; Wu, P.T.; Niu, W.Q.; Feng, H.; Fan, H.H.; Yang, S.W. Simulation experiment design and verification of controlling water erosion on small watershed of loess plateau. Trans. Chin. Soc. Agric. Eng. 2005, 10, 41–45. [Google Scholar]
- Gao, J.E.; Yang, S.W.; Wu, P.T.; Wang, G.Z.; Shu, R.J. Preliminary study on similitude law in simulative experiment for controlling hydraulic erosion. Trans. Chin. Soc. Agric. Eng. 2006, 1, 27–31. [Google Scholar]
- Yuan, J.P.; Lei, T.W.; Jiang, D.S.; Zhou, Q.Y. Simulated experimental study on normalized integrated model for different degrees of erosion control for small watersheds. Trans. Chin. Soc. Agric. Eng. 2000, 1, 22–25. [Google Scholar]
- Mu, X.M.; Li, P.F.; Gao, P.; Zhao, G.J.; Sun, W.Y. Review and evaluation of soil erosion models applied to China Loess Plateau. Yellow River 2016, 38, 100–114. [Google Scholar]
- Momm, H.G.; Bingner, R.L.; Wells, R.R.; Porter, W.S.; Yasarer, L.; Dabney, S.M. Enhanced field-scale characterization for watershed erosion assessments. Environ. Model. Softw. 2019, 117, 134–148. [Google Scholar] [CrossRef]
- Zheng, F.L.; Zhang, X.C.; Wang, J.X.; Flanagan, D.C. Assessing applicability of the WEPP hillslope model to steep landscapes in the northern Loess Plateau of China. Soil Tillage Res. 2020, 197, 104492. [Google Scholar] [CrossRef]
- Zhang, G.H. Research situation and prospect of the soil erosion model. Adv. Water Sci. 2002, 3, 389–396. [Google Scholar]
- Zhang, G.H. Several ideas related to soil erosion research. J. Soil Water Conserv. 2020, 4, 21–30. [Google Scholar]
- Hessel, R. Consequences of hyper concentrated flow for process-based soil erosion modelling on the Chinese Loess Plateau. Earth Surf. Process. Landf. 2006, 31, 1100–1114. [Google Scholar] [CrossRef]
- Furl, C.; Sharif, H.; Jeong, J. Analysis and simulation of large erosion events at central Texas unit source watersheds. J. Hydrol. 2015, 527, 494–504. [Google Scholar] [CrossRef]
- Heilig, A.; DeBruyn, D.; Walter, M.T. Testing of a mechanistic soil erosion model with a simple experiment. J. Hydrol. 2001, 244, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Q.; Gao, J.E.; Shao, H.; Zhao, C.H.; Yang, S.W.; Liang, G.G. Effects of model material selection on the similarity of erosion processes in hydraulic erosion simulation experiment. J. Soil Water Conserv. 2009, 23, 6–10. [Google Scholar]
- Li, S.Q.; Gao, J.E.; Zhao, C.H.; Shao, H.; Liang, G.G. Design and verification of water erosion scale simulation experiment on slop. Sci. Soil Water Conserv. 2010, 8, 6–12. [Google Scholar]
- Yin, Y.; Gao, J.E.; Li, H.J.; Han, S.Q.; Zhou, M.F. Study on extraction methods for hydrodynamic parameters of overland sediment flow. J. Soil Water Conserv. 2019, 33, 25–38. [Google Scholar]
- Yang, S.Q. Sediment transport capacity in rivers. J. Hydraul. Res. 2005, 2, 131–138. [Google Scholar] [CrossRef]
- Yang, S.Q.; Koh, S.C.; Kim, I.S.; Song, Y.C. Sediment transport capacity-An improved Bagnold formula. Int. J. Sediment Res. 2007, 1, 27–38. [Google Scholar]
- Milhous, R.T. Climate change and changes in sediment transport capacity in the Colorado Plateau, USA. Sediment Budg. 2005, 2, 271–278. [Google Scholar]
- Zhang, Y.B.; Zheng, F.L.; Wu, M. Research progresses in agricultural non-point source pollution caused by soil erosion. Adv. Water Sci. 2007, 1, 123–132. [Google Scholar]
- Zhao, Q.; Wang, K.; Huang, J.S.; Dong, J.W. Migration rule of non-point source pollutions from seasonal frozen soil in small watershed scale during thawing period. Trans. Chin. Soc. Agric. Eng. 2015, 1, 139–145. [Google Scholar]
- Wang, M.J.; Luo, L.; Lu, H.W.; Jiang, H. Similarity law of water pollutant biodegradation in model experiment. J. Sichuan Univ. (Eng. Sci. Ed.) 2004, 2, 25–28. [Google Scholar]
- Li, Z.B.; Zhu, B.B.; Li, P. Advancement in study on soil erosion and soil and water conservation. Acta Pedol. Sin. 2008, 45, 803–809. [Google Scholar]
- Yuan, X.B.; Shang, Z.Y.; Niu, D.C.; Fu, H. Advances in ecological degeneration and restoration of Loess Plateau. Pratacultural Sci. 2015, 32, 363–371. [Google Scholar]
- Liang, W.; Fu, B.J.; Wang, S.; Zhang, W.B.; Jin, Z.; Feng, X.M.; Yan, J.W.; Liu, Y.; Zhou, S. Quantification of the ecosystem carrying capacity on China’s Loess Plateau. Ecol. Indic. 2019, 101, 192–202. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, G.; Liu, P.L.; Zheng, F.L.; Zhang, J.Q.; Hu, F.N. Sediment transport capacity of concentrated flows on steep loessial slope with erodible beds. Sci. Rep. 2017, 7, 2350. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, G.; Zhang, Q.; Zheng, F.L.; Zhang, X.C.; Liu, P.L.; Zhang, J.Q.; Hu, F.N.; Abd-Elbasit, M.A.M. Quantifying contributions of slaking and mechanical breakdown of soil aggregates to splash erosion for different soils from the Loess Plateau of China. Soil Tillage Res. 2018, 178, 150–158. [Google Scholar] [CrossRef]
- Liu, G.; Tian, F.X.; Warrington, D.N.; Zheng, S.Q.; Zhang, Q. Efficacy of grass for mitigating runoff and erosion from an artificial loessial earthen road. Trans. Asabe 2010, 53, 119–125. [Google Scholar] [CrossRef]
- Coelho, A.T.; Galvão, T.C.B.; Pereira, A.R. The effects of vegetative cover in the erosion prevention of a road slope. Environ. Manag. Health 2001, 12, 78–87. [Google Scholar] [CrossRef]
Land-Use Pattern | Area (km2) | Vegetation Height (m) | Vegetation Coverage (%) |
---|---|---|---|
Terraced farmland | 0.028 | 0.2–0.4 | 80 |
Terraced orchard | 0.042 | 2–2.5 | 75 |
Arbor | 0.140 | 8–12 | 95 |
Shrub | 0.088 | 1.5–2 | 95 |
Grassland | 0.035 | 0.45–0.6 | 92 |
Water cellar | 0.018 | 0 | 0 |
Name | Scale Symbol | Scale Value | Calculation Method | |
---|---|---|---|---|
Geometric similarity | Plane scale | 100 | Set | |
Vertical scale | 100 | Set | ||
Vegetation coverage scale | 1 | Set | ||
Rainfall similarity | Rain intensity scale | 10 | Derived from Equation (1) | |
Rainfall capacity scale | Derived from formula P = i·t1 | |||
Rainfall time scale | Suppose | |||
Water flow similarity | Flow rate scale | 10 | Derived from Equations (4)–(6) | |
Flow amount scale | 100,000 | Derived from formula Q = vA | ||
Roughness scale | 2.15 | Derived from formula | ||
Water flow time scale | = | 10 | Derived from formula | |
Erosion and sediment movement similarity | Suspension movementsimilarity | = | 3.16 | Derived from formula |
Starting similarity | == | 10 | Derived from Equation (9) | |
Sediment content scale | 3 | Calibrate and measure | ||
The similarity in the bed surface deformation time | =( | Derived from Equation (10) | ||
Sediment transport ratio scale | = | 300,000 | Derived from formula = | |
Soil water similarity | Soil water content scale | 1 | Derived from Equation (11) | |
Pollutant similarity | Nitrogen content scale | 0.5 | Calibrate and measure | |
Phosphorus content scale | 0.9 | Calibrate and measure | ||
Nitrogen transport ratio scale | = | 150,000 | Derive | |
Phosphorus transport ratio scale | = | 270,000 | Derive |
Dam Height (m) | Top Width (m) | Bottom Width (m) | Upstream Slope Ratio | Downstream Slope Ratio |
---|---|---|---|---|
2 | 1.5 | 6.3 | 1:1.2 | 1:1.2 |
4 | 2 | 14 | 1:1.5 | 1:1.5 |
7 | 2.5 | 23.5 | 1:1.5 | 1:1.5 |
10 | 3.5 | 33.5 | 1:1.5 | 1:1.5 |
15 | 4.5 | 49.5 | 1:1.5 | 1:1.5 |
Runoff or Sediment Movement Parameter | Before Vegetation Restoration | After Vegetation Restoration |
---|---|---|
Runoff generation time (tc) | ||
Peak flood discharge time (th) | ||
Peak flood discharge (Qh) | ||
Peak sediment discharge time (ts) | ||
Erosion modulus (E) | ||
Peak sediment discharge value (Sf) |
Runoff Sediment Parameter | Law of Change | Proposed Consolidation Proportion |
---|---|---|
Runoff generation time (tc) | ≤3.3% | |
Flood peak time (th) | ≤2% | |
Flood peak discharge (Qh) | ≤3.3% | |
Average outlet discharge (Qp) | ≤3.3% | |
Peak sediment discharge time (ts) | ≤3.3% | |
Peak sediment discharge value (Sf) | ≤3.3% | |
Average sediment content atoutlet (Sp) | ≤3.3% | |
Average sediment transport ratio at outlet (Gs′) | ≤3.3% | |
Soil erosion modulus (E) | ≤3.3% | |
Average nitrogen concentration at outlet (CN) | ≤2% | |
Average phosphorusconcentration at outlet (CP) | ≤2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Q.; Gao, Z.; Li, X.; Gao, J.; Zhang, G.; Ahmad, R.; Liu, G.; Zhang, Y.; Li, W.; Zhou, F.; et al. Erosion Transportation Processes as Influenced by Gully Land Consolidation Projects in Highly Managed Small Watersheds in the Loess Hilly–Gully Region, China. Water 2021, 13, 1540. https://doi.org/10.3390/w13111540
Ji Q, Gao Z, Li X, Gao J, Zhang G, Ahmad R, Liu G, Zhang Y, Li W, Zhou F, et al. Erosion Transportation Processes as Influenced by Gully Land Consolidation Projects in Highly Managed Small Watersheds in the Loess Hilly–Gully Region, China. Water. 2021; 13(11):1540. https://doi.org/10.3390/w13111540
Chicago/Turabian StyleJi, Qianqian, Zhe Gao, Xingyao Li, Jian’en Gao, Gen’guang Zhang, Rafiq Ahmad, Gang Liu, Yuanyuan Zhang, Wenzheng Li, Fanfan Zhou, and et al. 2021. "Erosion Transportation Processes as Influenced by Gully Land Consolidation Projects in Highly Managed Small Watersheds in the Loess Hilly–Gully Region, China" Water 13, no. 11: 1540. https://doi.org/10.3390/w13111540
APA StyleJi, Q., Gao, Z., Li, X., Gao, J., Zhang, G., Ahmad, R., Liu, G., Zhang, Y., Li, W., Zhou, F., & Liu, S. (2021). Erosion Transportation Processes as Influenced by Gully Land Consolidation Projects in Highly Managed Small Watersheds in the Loess Hilly–Gully Region, China. Water, 13(11), 1540. https://doi.org/10.3390/w13111540