Distribution and Risk Assessment of Toxic Pollutants in Surface Water of the Lower Yellow River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Sites and Sampling Methods
2.2. Reagents
2.3. Water Quality Parameters and Pollution Indexes Analysis
2.4. Quality Assurance
2.5. Potential Ecological Risk Assessment and Data Statistics
- CPI is the comprehensive pollution index;
- CPIi is the single factor pollution index;
- Ci is the single pollutant tested in surface water;
- Si is the evaluation standard of corresponding pollutants (i.e., EQSSW);
- n is the number of test samples;
- Ki is the pollution sharing rate;
- i represents the parameters of COD, BOD5, TP, TP, and heavy metal pollutants.
3. Results and Discussion
3.1. Surface Water Contaminants in Lower Yellow River
3.2. Contaminants in Fish Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zeng, H.A.; Wu, J.L. Heavy Metal Pollution of Lakes along the Mid-Lower Reaches of the Yangtze River in China: Intensity, Sources and Spatial Patterns. Int. J. Environ. Res. Public Health 2013, 10, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.X.; Luo, D.G.; Zhao, D.Y.; Li, N.; Xiao, T.F.; Liu, J.Y.; Wei, L.Z.; Liu, Y.; Liu, L.R.; Liu, G.W. Distribution, Source and Risk Assessment of Heavy Metal(oid)s in Water, Sediments, and Corbicula Fluminea of Xijiang River, China. Int. J. Environ. Res. Public Health 2019, 16, 1823. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Zhang, F.X.; Hu, P.; Hough, R.; Fu, Q.; Zhang, Z.L.; An, L.H.; Li, Y.F.; Li, K.Y.; Liu, D.; et al. Heavy Metals in Sediment from the Urban and Rural Rivers in Harbin City, Northeast China. Int. J. Environ. Res. Public Health 2019, 16, 4313. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, Y.J.; Zhang, A.N.; Liu, Y.; Zhu, Y.; Guo, M.; Zhang, R. Spatial distribution, source identification, and potential risk assessment of toxic contaminants in surface waters from Yulin, China. Environ. Monit. Assess. 2019, 191, 293. [Google Scholar] [CrossRef]
- Xu, W.H.; Zhang, G.; Zou, S.C.; Ling, Z.H.; Wang, G.L.; Yan, W. A Preliminary Investigation on the Occurrence and Distribution of Antibiotics in the Yellow River and its Tributaries, China. Water Environ. Res. 2009, 81, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.L.; Bai, J.H.; Xiao, R.; Zhao, Q.Q.; Jia, J.; Cui, B.S.; Liu, X.H. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [Google Scholar] [CrossRef]
- Wu, J.J.; Su, Y.L.; Deng, Y.Q.; Guo, Z.X.; Cheng, C.H.; Ma, H.L.; Liu, G.F.; Xu, L.W.; Feng, J. Spatial and temporal variation of antibiotic resistance in marine fish cage-culture area of Guangdong, China. Environ. Pollut. 2019, 246, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Li, L.; Zhang, C.; Kamira, B.; Qiu, L.P.; Fan, L.M.; Wu, W.; Meng, S.L.; Hu, G.D.; Chen, J.Z. Occurrence and human dietary assessment of sulfonamide antibiotics in cultured fish around Tai Lake, China. Environ. Sci. Pollut. Res. 2017, 24, 17493–17499. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.; Gu, X.; Lin, C.; Xin, M.; Zhang, H.; Ouyang, W.; Liu, X.; He, M.; Wang, B. Distribution, sources, and ecological risks of potentially toxic elements in the Laizhou Bay, Bohai Sea: Under the long-term impact of the Yellow River input. J. Hazard. Mater. 2021, 413, 125429. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Gu, D.G.; Huang, M.S.; Chen, L.; Huang, Q.C.; He, Y. Spatial Distribution and Contamination Assessments of Heavy Metals in Sediments of Wenzhou River Network. Spectrosc. Spect. Anal. 2012, 32, 2540–2545. [Google Scholar]
- Lin, C.Y.; He, M.C.; Zhou, Y.X.; Guo, W.; Yang, Z.F. Distribution and contamination assessment of heavy metals in sediment of the Second Songhua River, China. Environ. Monit. Assess. 2008, 137, 329–342. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wang, J.; Liu, S.Q.; He, M.C.; Liu, X.T. Geochemical baseline and distribution of cobalt, manganese, and vanadium in the Liao River Watershed sediments of China. Geosci. J. 2013, 17, 455–464. [Google Scholar] [CrossRef]
- Zhuang, W.; Zhou, F.X. Distribution, source and pollution assessment of heavy metals in the surface sediments of the Yangtze River Estuary and its adjacent East China Sea. Mar. Pollut. Bull. 2021, 164, 112002. [Google Scholar] [CrossRef]
- Xiao, H.; Shahab, A.; Xi, B.D.; Chang, Q.X.; You, S.H.; Li, J.Y.; Sun, X.J.; Huang, H.W.; Li, X.K. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China. Environ. Pollut. 2021, 269, 116189. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhang, J.; Zhang, H.H.; Shi, X.Z.; Zou, Y.W.; Yang, G.P. Pollution characteristics, spatial variation, and potential risks of phthalate esters in the water-sediment system of the Yangtze River estuary and its adjacent East China Sea. Environ. Pollut. 2020, 265, 114913. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; Li, G.Y.; Yang, Y.; An, T.C. Pollution evaluation and health risk assessment of airborne toxic metals in both indoors and outdoors of the Pearl River Delta, China. Environ. Res. 2019, 179, 108793. [Google Scholar] [CrossRef]
- Li, Y.; Fang, J.; Yuan, X.Y.; Chen, Y.Y.; Yang, H.B.; Fei, X.H. Distribution Characteristics and Ecological Risk Assessment of Tetracyclines Pollution in the Weihe River, China. Int. J. Environ. Res. Public Health 2018, 15, 1803. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.F.; Duan, J.M.; Wang, L.; Li, W.; Guan, J.L.; Beecham, S.; Mulcahy, D. Heavy metal pollution and health risk assessment in the Wei River in China. Environ. Monit. Assess. 2015, 187. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Y.; Yu, G.B.; Li, H.B.; Yu, S.; Jiang, Y.P.; Li, G.L.; Lin, J.C. Temporal dynamics of urbanization-driven environmental changes explored by metal contamination in surface sediments in a restoring urban wetland park. J. Hazard. Mater. 2016, 309, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Niu, X.R.; Tang, M.; Zhang, B.T.; Wang, G.Q.; Yue, W.F.; Kong, X.L.; Zhu, J.Q. Distribution of microplastics in surface water of the lower Yellow River near estuary. Sci. Total Environ. 2020, 707, 135601. [Google Scholar] [CrossRef]
- Fu, G.B.; Chen, S.L.; Liu, C.M.; Shepard, D. Hydro-climatic trends of the Yellow River basin for the last 50 years. Clim. Chang. 2004, 65, 149–178. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.P.; Wang, G.Q.; Xue, W.N.; Yao, Z.P.; Xue, B.L. Assessing the Adaptability of Water Resources System in Shandong Province, China, Using a Novel Comprehensive Co-evolution Model. Water Resour. Manag. 2019, 33, 657–675. [Google Scholar] [CrossRef]
- Jia, H.L.; Sun, K.J.; Zhang, J.; Luo, X.X. Distribution and Pollution Assessment of Heavy Metals In Surface Sediment In Yellow River Estuary And The Adjacent Sea Area. Appl. Mech. Mater. 2014, 665, 464–468. [Google Scholar] [CrossRef]
- Ma, G.Y.; Wang, G.M. Heavy Metal Pollution and Wetland Protection in the Yellow River Basin. In Proceedings of the 3rd International Yellow River Forum on Sustainable Water Resources Management and Delta Ecosystem Maintenance, Dongying, China, 17–19 October 2007; Volume III, p. 182. [Google Scholar]
- Chen, J.Y.; Taniguchi, M.; Liu, G.Q.; Miyaoka, K.; Onodera, S.I.; Tokunaga, T.; Fukushima, Y. Nitrate pollution of groundwater in the Yellow River delta, China. Hydrogeol. J. 2007, 15, 1605–1614. [Google Scholar] [CrossRef]
- Weng, J.H. Water Environment Monitoring and Water Pollution Status in the Yellow River Basin. In Proceedings of the 1st International Yellow River Forum on River Basin Management, Zhengzhou, China, 21 October 2003; Volume IV, pp. 283–289. [Google Scholar]
- Xu, W.H.; Zhang, G.; Zou, S.C.; Li, X.D.; Liu, Y.C. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environ. Pollut. 2007, 145, 672–679. [Google Scholar] [CrossRef] [Green Version]
- Milijasevic, D.; Milanovic Pesic, A.; Brankov, J.; Radovanovic, M. Water Quality Assessment of the Borska Reka River Using the Wpi (Water Pollution Index) Method. Arch. Biol. Sci. 2011, 63, 819–824. [Google Scholar] [CrossRef]
- Liu, S.G.; Lou, S.; Kuang, C.P.; Huang, W.R.; Chen, W.J.; Zhang, J.L.; Zhong, G.H. Water quality assessment by pollution-index method in the coastal waters of Hebei Province in western Bohai Sea, China. Mar. Pollut. Bull. 2011, 62, 2220–2229. [Google Scholar] [CrossRef]
- Li, X.D.; Chen, Y.H.; Liu, C.; Hong, J.; Deng, H.; Yu, D.J. Eutrophication and Related Antibiotic Resistance of Enterococci in the Minjiang River, China. Microb. Ecol. 2020, 80, 1–13. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, M.; Tang, X. Eutrophication assessment of seasonal urban lakes in China Yangtze River Basin using Landsat 8-derived Forel-Ule index: A six-year (2013–2018) observation. Sci. Total Environ. 2020, 745, 135392. [Google Scholar] [CrossRef]
- Tang, W.; Cui, J.; Shan, B.; Wang, C.; Zhang, W. Heavy metal accumulation by periphyton is related to eutrophication in the Hai River Basin, Northern China. PLoS ONE 2014, 9, e86458. [Google Scholar] [CrossRef]
- Huang, X.P.; Huang, L.M.; Yue, W.Z. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Mar. Pollut. Bull. 2003, 47, 30–36. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Y.P.; Liu, S.; Xiao, Q.; Liang, W.X.; Song, Y.M. Contamination, distribution, and risk assessment of antibiotics in the urban surface water of the Pearl River in Guangzhou, South China. Environ. Monit. Assess. 2021, 193. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.T.; Jin, L.; He, T.T.; Wei, Z.; Liu, X.Y.; Zhu, L.Z.; Li, X.D. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. Sci. Total Environ. 2020, 740, 140001. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.J.; Li, S.J.; Xu, Y.J.; Zhang, G.X.; Zhang, J.Q. Intensive Livestock Production Causing Antibiotic Pollution in the Yinma River of Northeast China. Water 2019, 11, 2006. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Gao, R.X.; Wei, Y.Y.; Chen, T.; Fan, J.Q.; Zhou, Z.C.; Makimilua, T.B.; Jiao, Y.N.; Chen, H. High-throughput profiling and analysis of antibiotic resistance genes in East Tiaoxi River, China. Environ. Pollut. 2017, 230, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.W.; Meng, W.; Xu, J.; Zhang, Y.; Guo, C.S. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China. Environ. Sci. Process. Imp. 2014, 16, 586–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Zhou, J.L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 2014, 95, 604–612. [Google Scholar] [CrossRef]
- Golet, E.M.; Alder, A.C.; Giger, W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol. 2002, 36, 3645–3651. [Google Scholar] [CrossRef]
- Wu, C.F.; Chen, C.H.; Wu, C.Y.; Lin, C.S.; Su, Y.C.; Wu, C.F.; Tsai, H.P.; Fan, P.S.; Yeh, C.H.; Yang, W.C.; et al. Quinolone and Organophosphorus Insecticide Residues in Bivalves and Their Associated Risks in Taiwan. Molecules 2020, 25, 3636. [Google Scholar] [CrossRef]
- Jansomboon, W.; Boontanon, S.K.; Boontanon, N.; Polprasert, C. Determination and health risk assessment of enrofloxacin, flumequine and sulfamethoxazole in imported Pangasius catfish products in Thailand. J. Environ. Sci. Health B 2018, 53, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Nakata, H.; Kannan, K.; Jones, P.D.; Giesy, J.P. Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere 2005, 58, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Le Page, G.; Gunnarsson, L.; Snape, J.; Tyler, C.R. Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance. Environ. Int. 2017, 109, 155–169. [Google Scholar] [CrossRef]
- Zhang, R.J.; Yu, K.F.; Li, A.; Wang, Y.H.; Pan, C.G.; Huang, X.Y. Antibiotics in coral reef fishes from the South China Sea: Occurrence, distribution, bioaccumulation, and dietary exposure risk to human. Sci. Total Environ. 2020, 704, 135288. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Antunes, S.C.; Correia, A.T.; Golovko, O.; Zlabek, V.; Nunes, B. Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. Chemosphere 2019, 216, 234–247. [Google Scholar] [CrossRef]
- Varol, M.; Sunbul, M.R. Organochlorine pesticide, antibiotic and heavy metal residues in mussel, crayfish and fish species from a reservoir on the Euphrates River, Turkey. Environ. Pollut. 2017, 230, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Liu, Y.S.; Liu, W.R.; Jiang, Y.X.; Su, H.C.; Zhang, Q.Q.; Chen, X.W.; Yang, Y.Y.; Chen, J.; Liu, S.S.; et al. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region. Environ. Pollut. 2015, 198, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Rodas-Suarez, O.R.; Flores-Pedroche, J.F.; Betancourt-Rule, J.M.; Quinones-Ramirez, E.I.; Vazquez-Salinas, C. Occurrence and antibiotic sensitivity of Listeria monocytogenes strains isolated from oysters, fish, and estuarine water. Appl. Environ. Microbiol. 2006, 72, 7410–7412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernando, M.D.; Petrovic, M.; Fernandez-Alba, A.R.; Barcelo, D. Analysis by liquid chromatography-electro spray ionization tandem mass spectrometry and acute toxicity evaluation for beta-blockers and lipid-regulating agents in wastewater samples. J. Chromatogr. A 2004, 1046, 133–140. [Google Scholar] [PubMed]
- Mangalo, H.H.; Akbar, M.M. Limnological Investigation on the Al-Latifiyah Common Carp (Cyprinus-Carpio) Pond (Baghdad-Iraq). 2. Food and Feeding-Habits of Cyprinus-Carpio, L. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxic Hazard. Subst. Control 1988, 23, 513–524. [Google Scholar] [CrossRef]
- Osborne, J.A.; Riddle, R.D. Feeding and growth rates for triploid grass carp as influenced by size and water temperature. J. Freshwat. Ecol. 1999, 14, 41–45. [Google Scholar] [CrossRef]
Temperature (°C) | Dissolved Oxygen (mg/L) | pH | |
---|---|---|---|
Kenli | 27.2 | 7.07 | 7.90 |
Changqing | 25 | 5.81 | 7.93 |
Liangshan | 25 | 5.73 | 7.91 |
Lankao | 25 | 5.73 | 7.89 |
Zhengzhou | 25 | 5.36 | 7.81 |
Common Carp | Grass Carp | |||||
---|---|---|---|---|---|---|
Sex | Length (cm) | Weight (g) | Sex | Length (cm) | Weight (g) | |
Kenli | ♀ | 42.0 | 707.8 | ♂ | 46.3 | 1028.7 |
♂ | 39.0 | 573.4 | ♂ | 42.0 | 726.2 | |
♀ | 45.5 | 758.8 | ♂ | 46.0 | 1005.3 | |
Changqing | ♂ | 45.1 | 1102.8 | ♂ | 57.0 | 2367.1 |
♂ | 43.5 | 1092.3 | ♂ | 53.0 | 1894.6 | |
♂ | 42.0 | 957.9 | ♀ | 45.2 | 972.4 | |
Liangshan | ♂ | 30.2 | 419.1 | ♂ | 46.3 | 1198.3 |
♀ | 28.9 | 268.8 | ♂ | 49.5 | 1339.4 | |
♂ | 25.5 | 243.6 | ♂ | 51.0 | 1938.1 | |
Lankao & Zhengzhou | ♂ | 34.3 | 441.2 | ♂ | 44.6 | 912.0 |
♀ | 35.1 | 394.8 | ♂ | 51.5 | 1402.3 | |
♂ | 34.5 | 574.8 | ♂ | 46.5 | 1241.4 |
Comp | COD | BOD5 | TN | TP | Hg | Cu | Zn | Cr | As | |
---|---|---|---|---|---|---|---|---|---|---|
mg/L | mg/L | mg/L | mg/L | μg/L | μg/L | μg/L | μg/L | μg/L | ||
Kenli | Max | 86 | 42.40 | 10.90 | 1.05 | 0.13 | 2.52 | 7.60 | 2.34 | 2.70 |
Min | 83 | 42.40 | 10.80 | 1.04 | 0.10 | 2.51 | 7.50 | 2.26 | 2.20 | |
Mean | 84.67 | 42.40 | 10.83 | 1.04 | 0.12 | 2.52 | 7.57 | 2.30 | 2.43 | |
SD | 1.53 | 0 | 0.06 | 0.01 | 0.02 | 0.01 | 0.06 | 0.04 | 0.25 | |
Changqing | Max | 27 | 10.30 | 2.80 | 0.29 | 0.10 | 2.42 | ND | 2.30 | 1.20 |
Min | 26 | 10 | 2.62 | 0.28 | 0.07 | 2.25 | ND | 2.14 | 1.20 | |
Mean | 26.67 | 10.17 | 2.71 | 0.29 | 0.08 | 2.36 | ND | 2.21 | 1.20 | |
SD | 0.58 | 0.15 | 0.09 | 0.01 | 0.02 | 0.10 | ND | 0.08 | 0 | |
Liangshan | Max | 27 | 10.80 | 2.55 | 0.29 | ND | 2.05 | ND | 1.98 | 0.90 |
Min | 26 | 10.70 | 2.50 | 0.27 | ND | 1.90 | ND | 1.87 | 0.80 | |
Mean | 26.67 | 10.77 | 2.52 | 0.28 | ND | 1.99 | ND | 1.92 | 0.83 | |
SD | 0.47 | 0.05 | 0.02 | 0.01 | ND | 0.06 | ND | 0.05 | 0.05 | |
Lankao | Max | 44 | 15.60 | 2.86 | 0.25 | 0.09 | 1.65 | ND | 1.41 | 1 |
Min | 39 | 15.40 | 2.77 | 0.24 | 0.09 | 1.61 | ND | 1.31 | 0.90 | |
Mean | 41 | 15.47 | 2.82 | 0.24 | 0.09 | 1.63 | ND | 1.38 | 0.97 | |
SD | 2.16 | 0.09 | 0.04 | 0 | 0 | 0.02 | ND | 0.05 | 0.05 | |
Zhengzhou | Max | 11 | 4.40 | 3.24 | 0.25 | ND | 2.31 | ND | 2.06 | 1.1 |
Min | 11 | 4.40 | 3.12 | 0.24 | ND | 2.18 | ND | 1.95 | 1.1 | |
Mean | 11 | 4.40 | 3.19 | 0.24 | ND | 2.25 | ND | 2.02 | 1.1 | |
SD | 0 | 0 | 0.05 | 0 | ND | 0.05 | ND | 0.05 | 0 | |
EQSSW I | ≤ | 6~9 | 15 | 0.15 | 0.02 | 0.05 | 0.01 | 0.05 | 10 | 0.05 |
EQSSW II | ≤ | 6~9 | 15 | 0.5 | 0.1 | 0.05 | 1 | 1 | 50 | 0.05 |
EQSSW III | ≤ | 6~9 | 20 | 1.0 | 0.2 | 0.1 | 1 | 1 | 50 | 0.05 |
EQSSW IV | ≤ | 6~9 | 30 | 1.5 | 0.3 | 1.0 | 1 | 2 | 50 | 0.1 |
EQSSW V | ≤ | 6~9 | 40 | 2.0 | 0.4 | 1.0 | 1 | 2 | 100 | 0.1 |
Kenli | Changqing | Liangshan | Zhengzhou | ||
---|---|---|---|---|---|
Common carp | Hg (µg/kg) | 8.24 ± 0.21 | 1.16 ± 0.02 | 21.00 ± 1.00 | 14.80 ± 0.10 |
As (µg/kg) | 5.67 ± 0.20 | 17.07 ± 0.55 | 14.10 ± 0.62 | 7.86 ± 0.06 | |
Cu (µg/kg) | 411.33 ± 4.51 | 2156.67 ± 75.06 | 1883.33 ± 11.55 | 363.00 ± 1.00 | |
Cr (µg/kg) | 313.67 ± 4.04 | 375.00 ± 7.81 | 1156.67 ± 5.77 | 313.33 ± 5.77 | |
Zn (µg/kg) | 4310.00 ± 10.00 | 4783.33 ± 5.77 | 4810.00 ± 20.00 | 3806.67 ± 5.77 | |
ENR (ng/kg) | ND | 1190.00 ± 45.83 | ND | 94.00 ± 2.00 | |
CIP (ng/kg) | 51.67 ± 4.51 | 52.67 ± 9.50 | ND | 38.67 ± 3.51 | |
NOR (ng/kg) | ND | ND | ND | ||
Grass carp | Hg (µg/kg) | ND | 33.90 ± 1.37 | 9.55 ± 0.15 | 7.32 ± 0.11 |
As (µg/kg) | 3.63 ± 0.08 | 3.29 ± 0.18 | 3.86 ± 0.06 | 2.17 ± 0.11 | |
Cu (µg/kg) | 415.00 ± 5.57 | 356.67 ± 5.77 | 2883.33 ± 11.55 | 1753.33 ± 5.77 | |
Cr (µg/kg) | 327.00 ± 4.36 | 356.67 ± 11.55 | 343.33 ± 2.52 | 435.33 ± 1.53 | |
Zn (µg/kg) | 4940.00 ± 0 | 2536.67 ± 5.77 | 3446.67 ± 5.77 | 3280.00 ± 0 | |
ENR (ng/kg) | 54.67 ± 0.58 | 164.67 ± 4.16 | 93.33 ± 1.53 | 3411.00 ± 10.15 | |
CIP (ng/kg) | 22.67 ± 1.53 | ND | 26.00 ± 1.00 | ND | |
NOR (ng/kg) | ND | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.-H.; Li, Z.-P.; Tang, X.; Hou, W.-H.; Li, P. Distribution and Risk Assessment of Toxic Pollutants in Surface Water of the Lower Yellow River, China. Water 2021, 13, 1582. https://doi.org/10.3390/w13111582
Li Z-H, Li Z-P, Tang X, Hou W-H, Li P. Distribution and Risk Assessment of Toxic Pollutants in Surface Water of the Lower Yellow River, China. Water. 2021; 13(11):1582. https://doi.org/10.3390/w13111582
Chicago/Turabian StyleLi, Zhi-Hua, Ze-Peng Li, Xue Tang, Wen-Hao Hou, and Ping Li. 2021. "Distribution and Risk Assessment of Toxic Pollutants in Surface Water of the Lower Yellow River, China" Water 13, no. 11: 1582. https://doi.org/10.3390/w13111582
APA StyleLi, Z. -H., Li, Z. -P., Tang, X., Hou, W. -H., & Li, P. (2021). Distribution and Risk Assessment of Toxic Pollutants in Surface Water of the Lower Yellow River, China. Water, 13(11), 1582. https://doi.org/10.3390/w13111582