The Effect of Wall Shear Stress on Two Phase Fluctuating Flow of Dusty Fluids by Using Light Hill Technique
Abstract
:1. Introduction
2. Formulation of the Problem
- where,
- , , , , ,
- where is a heat transfer coefficient, is a magnetic variable, is Grashof number, dusty fluid variable, Dust particles parameter, Peclet number, radiation variable.
3. The Solution to the Problem
4. Graphical Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crowe, C.T.; Troutt, T.R.; Chung, J.N. Numerical models for two-phase turbulent flows. Ann. Rev. Fluid Mech. 1996, 28, 11–43. [Google Scholar] [CrossRef]
- Amkadni, M.; Azzouzi, A.; Hammouch, Z. On the exact solutions of laminar MHD flow over a stretching flat plate. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 359–368. [Google Scholar] [CrossRef]
- Michael, D.H.; Miller, D.A. Plane parallel flow of a dusty gas. Mathematika 1966, 13, 97–109. [Google Scholar] [CrossRef]
- Healy, J.V. Perturbed Two-Phase Cylindrical Type Flows. Phys. Fluids 1970, 13, 551–557. [Google Scholar] [CrossRef]
- Blevins, R.D. Applied Fluid Dynamics Handbook; Krieger Pub: New York, NY, USA, 1984. [Google Scholar]
- Ghosh, S.; Hunt, J.C.R. Induced air velocity within droplet driven sprays. Proc. R. Soc. Lon. Ser. A Math. Phys. Sci. 1994, 444, 105–127. [Google Scholar]
- Ahmed, N.; Sarmah, H.K.; Kalita, D. Thermal diffusion effect on a three-dimensional MHD free convection with mass transfer flow from a porous vertical plate. Lat. Am. Appl. Res. 2011, 41, 165–176. [Google Scholar]
- Takhar, H.S.; Roy, S.; Nath, G. Unsteady free convection flow over an infinite vertical porous plate due to the combined effects of thermal and mass diffusion, magnetic field and Hall currents. Heat Mass Transf. 2003, 39, 825–834. [Google Scholar] [CrossRef]
- Wilks, G. Magnetohydrodynamic free convection about a semi-infinite vertical plate in a strong cross field. Z. Angew. Math. Phys. 1976, 27, 621–631. [Google Scholar] [CrossRef]
- Gupta, A.S. Steady and transient free convection of an electrically conducting fluid from a vertical plate in the presence of a magnetic field. Appl. Sci. Res. 1960, 9, 319. [Google Scholar] [CrossRef]
- Gupta, A.S. Laminar free convection flow of an electrically conducting fluid from a vertical plate with uniform surface heat flux and variable wall temperature in the presence of a magnetic field. J. Appl. Math. Phys. 1962, 13, 324–333. [Google Scholar] [CrossRef]
- Soo, S.L. Fluid Dynamics of Multiphase Systems; Blaisdell Publishing Co.: Waltham, MA, USA, 1967; Volume 1. [Google Scholar]
- Grew, K.N.; Chiu, W.K. A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes. J. Electrochem. Soc. 2010, 157, B327. [Google Scholar] [CrossRef]
- Saffman, P.G. On the stability of laminar flow of a dusty gas. J. Fluid Mech. 1962, 13, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Vimala, C.S. Flow of a dusty gas between two oscillating plates. Def. Sci. J. 1972, 22, 231–236. [Google Scholar]
- Venkateshappa, V.; Rudraswamy, B.; Gireesha, B.J.; Gopinath, K. Viscous dusty fluid flow with constant velocity magnitude. Electron. J. Theor. Phys. 2008, 5, 237–252. [Google Scholar]
- Zhou, T.; Ge, J.; Shi, L.; Fan, J.; Liu, Z.; Joo, S.W. Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel. Electrophoresis 2018, 39, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ji, X.; Shi, L.; Zhang, X.; Song, Y.; Joo, S.W. AC dielectrophoretic deformable particle-particle interactions and their relative motions. Electrophoresis 2020, 41, 952–958. [Google Scholar] [CrossRef]
- Ali, F.; Bilal, M.; Gohar, M.; Khan, I.; Sheikh, N.A.; Nisar, K.S. A Report On Fluctuating Free Convection Flow Of Heat Absorbing Viscoelastic Dusty Fluid Past In A Horizontal Channel With MHD Effect. Sci. Rep. 2020, 10, 1–15. [Google Scholar]
- Ali, F.; Bilal, M.; Sheikh, N.A.; Nisar, K.S.; Khan, I. Two-Phase Fluctuating Flow of Dusty Viscoelastic Fluid between Non-Conducting Rigid Plates with Heat Transfer. IEEE Access 2019, 7, 123299–123306. [Google Scholar] [CrossRef]
- Attia, H.A.; Al-Kaisy, A.M.A.; Ewis, K.M. MHD Couette flow and heat transfer of a dusty fluid with exponential decaying pressure gradient. J. Appl. Sci. Eng. 2011, 14, 91–96. [Google Scholar]
- Ali, F.; Khan, I.; Shafie, S. Closed Form Solutions for Unsteady Free Convection Flow of a Second Grade Fluid over an Oscillating Vertical Plate. PLoS ONE 2014, 9, e85099. [Google Scholar]
- Massoudi, M. Constitutive relations for the interaction force in multicomponent particulate flows. Int. J. Non-Linear Mech. 2003, 38, 313–336. [Google Scholar] [CrossRef]
- Fedkiw, R.P. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 2002, 175, 200–224. [Google Scholar] [CrossRef] [Green Version]
- Anthony, E. Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. Prog. Energy Combust. Sci. 1995, 21, 239–268. [Google Scholar] [CrossRef]
- Gidaspow, D. Multiphase Flow and Fluidization; Academic Press: New York, NY, USA, 1994. [Google Scholar]
- Ungarish, M.; Ungarish, P.D.M. Hydrodynamics of Suspensions. Hydrodyn. Suspens. 1993, 290, 406. [Google Scholar]
- Lighthill, M. CIX. A Technique for rendering approximate solutions to physical problems uniformly valid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1949, 40, 1179–1201. [Google Scholar] [CrossRef]
- Comstock, C. The Poincaré–Lighthill Perturbation Technique and Its Generalizations. SIAM Rev. 1972, 14, 433–446. [Google Scholar] [CrossRef]
- Große, S.; Schröder, W. High Reynolds number turbulent wind tunnel boundary layer wall-shear stress sensor. J. Turbul. 2009, 1, N14. [Google Scholar] [CrossRef]
- Amili, O.; Soria, J. Wall shear stress distribution in a turbulent channel flow. In Proceedings of the 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 5–8 July 2010. [Google Scholar]
- Örlü, R.; Schlatter, P. On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows. Phys. Fluids 2011, 23, 021704. [Google Scholar] [CrossRef]
- Moß, C.; Jarmatz, N.; Hartig, D.; Schnöing, L.; Scholl, S.; Schröder, U. Studying the Impact of Wall Shear Stress on the Development and Performance of Electrochemically Active Biofilms. ChemPlusChem 2020, 85, 2298–2307. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, K.L. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method. Energy 2017, 130, 486–499. [Google Scholar] [CrossRef]
- Hsiao, K.-L. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Appl. Therm. Eng. 2017, 112, 1281–1288. [Google Scholar] [CrossRef]
- Hsiao, K.-L. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int. J. Heat Mass Transf. 2017, 112, 983–990. [Google Scholar] [CrossRef]
- Hsiao, K.-L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl. Therm. Eng. 2016, 98, 850–861. [Google Scholar] [CrossRef]
- Narahari, M.; Pendyala, R. Exact Solution of the Unsteady Natural Convective Radiating Gas Flow in a Vertical Channel. In AIP Conference Proceedings; American Institute of Physics: University Park, MD, USA, 2013; Volume 1557, pp. 121–124. [Google Scholar]
Parameter | Description | Assumed Values |
---|---|---|
Time | 0.5 | |
Magnetic variable | 2 | |
Dust particles parameter | 5 | |
Dusty fluid variable | 1 | |
Grashof number | 2 | |
Peclet number | 1 | |
Radiation variable | 2 | |
----------- | 0.001 | |
------------- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, D.; Rahman, A.u.; Ali, G.; Kumam, P.; Kaewkhao, A.; Khan, I. The Effect of Wall Shear Stress on Two Phase Fluctuating Flow of Dusty Fluids by Using Light Hill Technique. Water 2021, 13, 1587. https://doi.org/10.3390/w13111587
Khan D, Rahman Au, Ali G, Kumam P, Kaewkhao A, Khan I. The Effect of Wall Shear Stress on Two Phase Fluctuating Flow of Dusty Fluids by Using Light Hill Technique. Water. 2021; 13(11):1587. https://doi.org/10.3390/w13111587
Chicago/Turabian StyleKhan, Dolat, Ata ur Rahman, Gohar Ali, Poom Kumam, Attapol Kaewkhao, and Ilyas Khan. 2021. "The Effect of Wall Shear Stress on Two Phase Fluctuating Flow of Dusty Fluids by Using Light Hill Technique" Water 13, no. 11: 1587. https://doi.org/10.3390/w13111587
APA StyleKhan, D., Rahman, A. u., Ali, G., Kumam, P., Kaewkhao, A., & Khan, I. (2021). The Effect of Wall Shear Stress on Two Phase Fluctuating Flow of Dusty Fluids by Using Light Hill Technique. Water, 13(11), 1587. https://doi.org/10.3390/w13111587