Spatial Distribution Characteristics and Sources of Nutrients and Heavy Metals in the Xiujiang River of Poyang Lake Basin in the Dry Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Destription of the Study Area
2.2. Samples and Methods
3. Results
3.1. Hydro-Chemical Characteristics of the Xiujiang River
3.2. Changes in the Nitrogen and Phosphorus Contents in the Xiujiang River
3.3. Characteristics and Spatial Distributions of the Dissolved Heavy Metals in the Rivers
4. Discussion
4.1. Cluster and Discriminant Analyses
4.2. Identification of the Heavy Metal and Nutrient Sources
4.3. Source Contributions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takić, L.; Mladenović-Ranisavljević, I.; Vasović, D.; Đorđević, L. The Assessment of the Danube River Water Pollution in Serbia. Water Air Soil Pollut. 2017, 228, 380. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K. Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River, India. J. Hazard. Mater. 2014, 265, 305–314. [Google Scholar] [CrossRef]
- Kasimov, N.; Shinkareva, G.; Lychagin, M.; Kosheleva, N.; Chalov, S.; Pashkina, M.; Thorslund, J.; Jarsjö, J. River Water Quality of the Selenga-Baikal Basin: Part I—Spatio-Temporal Patterns of Dissolved and Suspended Metals. Water 2020, 12, 2137. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566–567, 1552–1567. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, S.; Wu, S.; Wang, C.; Li, B.; Li, Y.; Wang, J. Combining emission inventory and isotope ratio analyses for quantitative source apportionment of heavy metals in agricultural soil. Chemosphere 2018, 204, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Molekoa, M.; Avtar, R.; Kumar, P.; Minh, H.T.; Dasgupta, R.; Johnson, B.; Sahu, N.; Verma, R.; Yunus, A. Spatio-Temporal Analysis of Surface Water Quality in Mokopane Area, Limpopo, South Africa. Water 2021, 13, 220. [Google Scholar] [CrossRef]
- Huang, F.; Xu, Y.; Tan, Z.; Wu, Z.; Xu, H.; Shen, L.; Xu, X.; Han, Q.; Qingguo, H.; Hu, Z. Assessment of pollutions and identification of sources of heavy metals in sediments from west coast of Shenzhen, China. Environ. Sci. Pollut. Res. 2018, 25, 3647–3656. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.-J.; You, C.-F.; Kuo, T.-Y. Source identification of Zn in Erren River, Taiwan: An application of Zn isotopes. Chemosphere 2020, 248, 126044. [Google Scholar] [CrossRef]
- Gafur, N.A.; Sakakibara, M.; Sano, S.; Sera, K. A Case Study of Heavy Metal Pollution in Water of Bone River by Artisanal Small-Scale Gold Mine Activities in Eastern Part of Gorontalo, Indonesia. Water 2018, 10, 1507. [Google Scholar] [CrossRef] [Green Version]
- Dietler, D.; Babu, M.; Cissé, G.; Halage, A.A.; Malambala, E.; Fuhrimann, S. Daily variation of heavy metal contamination and its potential sources along the major urban wastewater channel in Kampala, Uganda. Environ. Monit. Assess. 2019, 191, 52. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, A.M.; Pshinko, G.N.; Demchenko, V.Y.; Marchenko, O. Ecological substantiation of invariably high concentrations of heavy metals in municipal wastewater sludges. J. Water Chem. Technol. 2015, 37, 206–210. [Google Scholar] [CrossRef]
- Kong, X.; Cao, J.; Tang, R.; Zhang, S.; Dong, F. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China. Environ. Monit. Assess. 2014, 186, 7719–7731. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tang, X.; Guo, W.; Lin, L.; Zhao, L.; Hu, Y.; Liu, M. Spatiotemporal distribution dynamics of heavy metals in water, sediment, and zoobenthos in mainstream sections of the middle and lower Changjiang River. Sci. Total Environ. 2020, 714, 136779. [Google Scholar] [CrossRef]
- Bhattacharya, B.D.; Nayak, D.C.; Sarkar, S.K.; Biswas, S.N.; Rakshit, D.; Ahmed, K. Distribution of dissolved trace metals in coastal regions of Indian Sundarban mangrove wetland: A multivariate approach. J. Clean. Prod. 2015, 96, 233–243. [Google Scholar] [CrossRef]
- Putri, M.S.A.; Lou, C.-H.; Syai’In, M.; Ou, S.-H.; Wang, Y.-C. Long-Term River Water Quality Trends and Pollution Source Apportionment in Taiwan. Water 2018, 10, 1394. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Cai, Y.; Zhang, L.; Chen, Y. Spatial and temporal heterogeneities in water quality and their potential drivers in Lake Poyang (China) from 2009 to 2015. Limnologica 2018, 69, 115–124. [Google Scholar] [CrossRef]
- Zhang, D.W.; Zhang, L.; He, J.H.; Luo, L.G. Spatial distributions and risk assessment of dissolved heavy metals in Poyang Lake. Acta Ecol. Sin. 2015, 35, 8028–8035, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Y.; Wang, M.; Wang, P.; Shi, G.; Ding, M. Spatial characterization, risk assessment, and statistical source identification of the dissolved trace elements in the Ganjiang River—Feeding tributary of the Poyang Lake, China. Environ. Sci. Pollut. Res. 2016, 24, 2890–2903. [Google Scholar] [CrossRef] [PubMed]
- Chuanqiong, L.; Peng, W.; Bo, C.; Yan, L. Spatial distribution and pollution source of dissolved metals in the Ganjiang River of Lake Poyang Basin. J. Lake Sci. 2018, 30, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.C.; Hu, W.; Ge, G.; Xiong, Y.; Lai, J.H.; Wu, L. Contents of nutrients and heavy metals in The Poyang Lake during dry season. Resour. Environ. Yantze Basin 2012, 21, 1230–1235, (in Chinese with English abstract). [Google Scholar]
- Lang, F.X.; Cai, Q.; Huang, X.J. Current situation analysis and changing trend for waterquality of the trunk stream of Xiuhe River. J. Water Resour. Res. 2013, 34, 41–44, (in Chinese with English abstract). [Google Scholar]
- Wang, X.S. Multivariate analysis for discriminating profiles of soil heavy metals as influenced by various contamination sources. Environ. Earth Sci. 2016, 75, 1013. [Google Scholar] [CrossRef]
- Rafighdoust, Y.; Eckstein, Y.; Harami, R.M.; Gharaie, M.H.M.; Mahboubi, A. Using inverse modeling and hierarchical cluster analysis for hydrochemical characterization of springs and Talkhab River in Tang-Bijar oilfield, Iran. Arab. J. Geosci. 2016, 9, 241. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Ren, B.; Luo, J.; Yuan, J.; Ding, X.; Bian, H.; Yao, X. Trends and Health Risks of Dissolved Heavy Metal Pollution in Global River and Lake Water from 1970 to 2017. Rev. Environ. Contam. Toxicol. 2019, 251, 1–24. [Google Scholar] [CrossRef]
- López-López, J.A.; Vargas, M.G.; Moreno, C. A chemometric approach to the evaluation of atmospheric and fluvial pollutant inputs in aquatic systems: The Guadalquivir River estuary as a case study. Environ. Pollut. 2011, 159, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Varol, M. Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere 2013, 93, 954–962. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Y.; Zhang, Z.; Dai, J.; Dai, B.; Zhu, Y. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. J. Soils Sediments 2015, 15, 163–178. [Google Scholar] [CrossRef]
- Shu, W.; Wang, P.; Xiao, H.Y.; Liu, J.Z.; Zhao, J.Y. Hydrochemical characteristics and influencing factors in the Le’an River, Poyang Lake Basin. Resour. Environ. Yangtze Basin 2019, 28, 681–690, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Mao-Lan, W.; Wen-Bin, Z.; Chun-Hua, H. Status of nitrogen and phosphorus in waters of Lake Poyang Basin. J. Lake Sci. 2008, 20, 334–338. [Google Scholar] [CrossRef]
- Yang, Z.F.; Xia, X.Q.; Yu, T.; Hou, Q.Y.; Cao, T.N.; Zhong, J. Distribution and fluxes of As and trace metals in the Dongting Lake water system, Hunan province, China. Geoscience 2008, 22, 897–908, (in Chinese with English abstract). [Google Scholar]
- Licheng, Z.; Kezhun, Z. Background values of trace elements in the source area of the Yangtze River. Sci. Total Environ. 1992, 125, 391–404. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, Recommendations Incorporating 1st and 2nd Addenda, 13th ed.; World Health Organization: Geneva, Switerland, 2008. [Google Scholar]
- Chinese Ministry of Health (CMH). Chinese State Standards (CSS) for Drinking Water Quality; 5749-2006; CMH: Beijing, China, 2007; (in Chinese with English abstract).
- Jinbao, W.; Weiwei, Y.; Ting, X. Research on heavy metals pollution status of Le’an River, Lake Poyang Basin. J. Lake Sci. 2007, 19, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.Q.; Tie, B.Q.; Hu, K.C.; Zhou, J.C.; Yuan, X. Effect of Changsha water conservancy project reserviron the water environment quality of Xiangjiang River. Sichuan Environ. 2015, 34, 81–86, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Fu, J.X.; Zhang, X.B.; Yan, D.C. Seasonal variations in TP, COD, BOD5 And CODMn of the Jinshajiang River, Minjiang River and Changjiang River nearby Yinbin city. Earth Environ. 2008, 36, 336–341, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, Z.; Shao, D.; Westerhoff, P. Wastewater discharge impact on drinking water sources along the Yangtze River (China). Sci. Total Environ. 2017, 599–600, 1399–1407. [Google Scholar] [CrossRef]
- Gong, Q.L.; Liu, Y.; Tang, B.B. Temporal and spatial Distribution characteristics of water quality in Yibin sec-tion of the Yangtze River. Environ. Sci. Technol. 2016, 39, 111–116, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Fernandes, A.C.P.; Fernandes, L.F.S.; Cortes, R.M.V.; Pacheco, F.A.L. The Role of Landscape Configuration, Season, and Distance from Contaminant Sources on the Degradation of Stream Water Quality in Urban Catchments. Water 2019, 11, 2025. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Q. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. J. Hazard. Mater. 2010, 176, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Ahmed, K.; Raknuzzaman, M.; Mamun, H.-A.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Hu, C.H.; Zhou, P.; Huang, P.; Du, J.; Zhou, W.B. Behavior characteristics of dissolved heavy metals and health risks assessment from Poyang Lake Basin, China. J. Agro-Environ. Sci. 2012, 31, 1009–1014, (in Chinese with English abstract). [Google Scholar]
- Xu, S.; Lang, Y.; Zhong, J.; Xiao, M.; Ding, H. Coupled controls of climate, lithology and land use on dissolved trace elements in a karst river system. J. Hydrol. 2020, 591, 125328. [Google Scholar] [CrossRef]
- Dević, G.; Sakan, S.; Đorđević, D. Assessment of the environmental significance of nutrients and heavy metal pollution in the river network of Serbia. Environ. Sci. Pollut. Res. 2015, 23, 282–297. [Google Scholar] [CrossRef]
- Phung, D.; Huang, C.; Rutherford, S.; Dwirahmadi, F.; Chu, C.; Wang, X.; Nguyen, M.; Nguyen, N.H.; Do, C.M.; Nguyen, T.H.; et al. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: A study in Can Tho City, a Mekong Delta area, Vietnam. Environ. Monit. Assess. 2015, 187, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Prasad, B.; Soni, A.K.; Vishwakarma, A.; Trivedi, R.; Singh, K.K.K. Evaluation of water quality near the Malanjhkhand copper mines, India, by use of multivariate analysis and a metal pollution index. Environ. Earth Sci. 2020, 79, 1–23. [Google Scholar] [CrossRef]
- Kotnala, G.; Dobhal, S.; Chauhan, J.S. Monitoring the self-purification capacity of the River Alaknanda stretch at Srinagar, Uttarakhand, India. Int. J. River Basin Manag. 2016, 14, 491–498. [Google Scholar] [CrossRef]
- Singh, K.R.; Goswami, A.P.; Kalamdhad, A.S.; Kumar, B. Assessment of surface water quality of Pagladia, Beki and Kolong rivers (Assam, India) using multivariate statistical techniques. Int. J. River Basin Manag. 2020, 18, 511–520. [Google Scholar] [CrossRef]
- Ahmad, N.; Pandey, P. Spatio-Temporal Distribution, Ecological Risk Assessment, and Multivariate Analysis of Heavy Metals in Bathinda District, Punjab, India. Water Air Soil Pollut. 2020, 231, 1–32. [Google Scholar] [CrossRef]
- Dragićević, S.; Nenadović, S.; Jovanović, B.; Milanović, M.; Novković, I.; Pavić, D.; Lješević, M. Degradation of Topčiderska River water quality (Belgrade). Carpath. J. Earth. Environ. 2010, 5, 177184. [Google Scholar]
- Zhang, Y.; Liu, S.; Cheng, F.; Coxixo, A.; Hou, X.; Shen, Z.; Chen, L. Spatial Distribution of Metals and Associated Risks in Surface Sediments Along a Typical Urban River Gradient in the Beijing Region. Arch. Environ. Contam. Toxicol. 2017, 74, 80–91. [Google Scholar] [CrossRef]
- Fu, J.; Zhao, C.; Luo, Y.; Liu, C.; Kyzas, G.Z.; Luo, Y.; Zhao, D.; An, S.; Zhu, H. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. J. Hazard. Mater. 2014, 270, 102–109. [Google Scholar] [CrossRef]
- Bian, Z.; Feng, Y.; Li, H.; Du, Z. Removal of chemical oxygen demand (COD) and heavy metals by catalytic ozonation–microbial fuel cell and Acidithiobacillus ferrooxidans leaching in flotation wastewater (FW). Water Sci. Technol. 2019, 79, 2328–2336. [Google Scholar] [CrossRef] [PubMed]
- Canela, P.; Clements, T.L.S.; Sobolev, D. High nitrogen to phosphorus ratio in a Texas coastal river: Origins and implications for nutrient pollution sources and exports. J. Coast. Conserv. 2020, 24, 1–7. [Google Scholar] [CrossRef]
- De La Cueva, A.V.; Marchant, B.P.; Quintana, J.R.; De Santiago, A.; Lafuente, A.L.; Webster, R. Spatial variation of trace elements in the peri-urban soil of Madrid. J. Soils Sediments 2013, 14, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Corbi, J.J.; Trivinho-Strixino, S.; Dos Santos, A. Environmental Evaluation of Metals in Sediments and Dragonflies Due to Sugar Cane Cultivation in Neotropical Streams. Water Air Soil Pollut. 2008, 195, 325–333. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Singh, D.S.; Singh, A.K. Environmental repercussions of cane-sugar industries on the Chhoti Gandak river basin, Ganga Plain, India. Environ. Monit. Assess. 2009, 171, 321–344. [Google Scholar] [CrossRef]
Site | pH | T | DO | CODCr | BOD5 | NH4+-N | TP | TN | Cu | Zn | Cr | As | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/L | µg/L | ||||||||||||
Upper Reaches of mainstream | Max | 6.80 | 11.9 | 7.88 | 7.38 | 3.70 | 0.63 | 0.17 | 0.73 | 240.0 | 167.0 | 9.0 | 0.57 |
Min | 6.17 | 11.6 | 5.37 | 5.21 | 2.57 | 0.03 | 0.02 | 0.32 | 40.0 | 0.00 | 0.0 | 0.33 | |
Mean | 6.54 | 11.8 | 6.37 | 5.88 | 3.26 | 0.38 | 0.11 | 0.50 | 65.3 | 36.9 | 4.7 | 0.40 | |
SD | 0.24 | 0.10 | 0.87 | 0.68 | 0.41 | 0.21 | 0.04 | 0.13 | 61.7 | 48.4 | 4.0 | 0.08 | |
CV | 0.04 | 0.01 | 0.14 | 0.12 | 0.13 | 0.55 | 0.34 | 0.26 | 0.95 | 1.31 | 0.87 | 0.19 | |
Number | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
Middle reaches of mainstream | Max | 7.23 | 12.1 | 8.86 | 11.35 | 3.43 | 0.47 | 0.18 | 0.62 | 93.3 | 56.3 | 8.7 | 0.53 |
Min | 6.60 | 11.6 | 5.69 | 0.00 | 0.73 | 0.08 | 0.08 | 0.30 | 40.0 | 28.3 | 0.0 | 0.00 | |
Mean | 6.88 | 11.8 | 7.19 | 5.67 | 2.11 | 0.28 | 0.15 | 0.47 | 52.0 | 40.1 | 5.3 | 0.18 | |
SD | 0.19 | 0.14 | 0.98 | 4.40 | 0.95 | 0.13 | 0.03 | 0.11 | 15.6 | 8.2 | 3.0 | 0.24 | |
CV | 0.03 | 0.01 | 0.14 | 0.78 | 0.45 | 0.46 | 0.23 | 0.23 | 0.30 | 0.21 | 0.62 | 1.33 | |
Number | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
Lower reaches of mainstream | Max | 6.93 | 13.0 | 7.48 | 17.87 | 3.83 | 1.22 | 0.26 | 1.32 | 11.7 | 41.7 | 12.3 | 0.53 |
Min | 6.57 | 11.8 | 6.06 | 0.00 | 0.83 | 0.04 | 0.02 | 0.40 | 43.3 | 27.7 | 0.0 | 0.00 | |
Mean | 6.75 | 12.1 | 6.73 | 7.28 | 2.63 | 0.36 | 0.12 | 0.60 | 66.7 | 35.4 | 5.7 | 0.29 | |
SD | 0.14 | 0.458 | 0.57 | 6.06 | 1.29 | 0.44 | 0.09 | 0.36 | 25.8 | 5.0 | 5.0 | 0.23 | |
CV | 0.02 | 0.038 | 0.09 | 0.83 | 0.49 | 1.20 | 0.71 | 0.60 | 0.39 | 0.14 | 0.86 | 0.81 | |
Number | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
Liaohe tributary | Max | 7.37 | 11.7 | 6.91 | 16.88 | 3.63 | 0.89 | 0.19 | 1.13 | 216.7 | 514.0 | 87.0 | 8.40 |
Min | 7.13 | 11.0 | 5.76 | 0.00 | 1.27 | 0.04 | 0.02 | 0.41 | 43.3 | 11.3 | 0.00 | 0.00 | |
Mean | 7.21 | 11.3 | 6.40 | 6.14 | 3.00 | 0.21 | 0.10 | 0.52 | 85.0 | 102.1 | 5.6 | 1.88 | |
SD | 0.07 | 0.21 | 0.35 | 6.31 | 0.68 | 0.22 | 0.06 | 0.20 | 62.5 | 160.1 | 3.0 | 2.59 | |
CV | 0.01 | 0.02 | 0.06 | 1.03 | 0.23 | 1.06 | 0.61 | 0.39 | 0.74 | 1.57 | 0.54 | 1.38 | |
Number | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
River/Tributary | pH | DO | CODCr | BOD5 | NH4+-N | TP | TN | Cu | Zn | Cr | As | References | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/L | µg/L | ||||||||||||
Poyang Lake basin | Xiujiangmainstream | 6.7 | 6.77 | 6.13 | 2.67 | 0.336 | 0.130 | 0.51 | 60.5 | 37.8 | 5.15 | 0.29 | This study |
Liaohe Tributary | 7.2 | 6.40 | 6.14 | 3.00 | 0.207 | 0.098 | 0.52 | 85.0 | 102.1 | 5.56 | 1.88 | This study | |
Raohe River | 6.91 | - | 20.6 | - | 1.04 | 0.25 | 3.14 | 48.7 | 95.1 | - | - | [20] | |
Ganjiang River | 7.3 | - | 21.3 | - | 0.22 | 0.05 | 0.44 | 38.5 | 77.1 | - | - | ||
Fuhe River | 7.45 | - | 17.6 | - | 0.35 | 0.065 | 0.52 | 61.4 | 122.8 | - | - | ||
Xinjiang River | 7.54 | - | 17.4 | - | 0.41 | 0.072 | 1.32 | 46.7 | 79.3 | - | - | ||
Le’an River | 7.32 | - | 3.8–10.1 | - | 0.72 | 0.062 | - | 133.2 a | 22.2 a | [28] | |||
Poyang lake | 7.0–7.6 b | 6.9–8.3 b | 1.1–1.8 b | 1.0–2.3 b | 0.10 | 0.067 | 1.06 | 45.5 c | 94.1 c | - | - | [29] | |
Agricultural water | - | - | - | - | 0.9 | 28.63 | 13.47 | - | - | - | - | ||
Municipal sewage | - | - | - | - | 5.48 | 1.15 | 6.55 | - | - | - | - | ||
Yangtze River | Hunan station | 8.1 | 2.74 | 7.32 | 2.58 | [30] | |||||||
Background values | 3.01 | 6.46 | 12.6 | 3.32 | [31] | ||||||||
Tributary of the Yangtze River Xiangjiang River | 7.8 | 5.28 d | 17.96 d | - | 0.34 d | 0.11 d | 2.3 d | 1.78 | 10.3 | - | 12.81 | [30] | |
Water quality criteria for drinking | WHO A | 6.5–8.2 | 3.0 | - | - | 0.5 | 0.2 | - | 2000 | 3000 | 50 | 10 | [32] |
China (Ⅲ) B | 6–9 | 5.0 | 20.0 | 4.0 | 1.0 | 0.2 | 1.0 | 1000 | 1000 | 50 | 50 | [33] |
Variables | Clusters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CA1 (n = 5) | CA2 (n = 15) | CA3 (n = 11) | CA4 (n = 7) | Significant Test df = 3 | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | MS | F | P | |
T | 11.44 d | 0.25 | 11.67 | 0.32 | 11.74 | 0.23 | 11.87 a | 0.55 | 0.19 | 1.63 | 0.20 |
pH | 7.12 d | 0.18 | 6.83 | 0.38 | 6.88 | 0.26 | 6.76 a | 0.21 | 0.14 | 1.52 | 0.23 |
DO | 6.24 | 0.58 | 6.88 d | 0.84 | 6.97 d | 0.54 | 5.96 bc | 0.67 | 2.02 | 4.09 | 0.01 |
CODCr | 12.23 e | 4.77 | 2.98 e | 3.07 | 6.64 ab | 3.21 | 7.72 ab | 4.64 | 118.49 | 8.85 | 0.00 |
BOD5 | 3.48 c | 0.13 | 3.17 c | 0.46 | 1.58 e | 0.59 | 3.32 c | 0.49 | 7.53 | 31.93 | 0.00 |
NH4+-N | 0.23 d | 0.19 | 0.17 d | 0.12 | 0.27 d | 0.11 | 0.66 e | 0.30 | 0.40 | 13.57 | 0.00 |
TP | 0.08 | 0.04 | 0.13 | 0.05 | 0.12 | 0.06 | 0.14 | 0.07 | 0.00 | 0.99 | 0.41 |
TN | 0.46 d | 0.10 | 0.44 d | 0.07 | 0.47 d | 0.10 | 0.77 e | 0.33 | 0.19 | 7.56 | 0.00 |
Cu | 164.67 e | 82.41 | 54.89 a | 13.68 | 57.27 a | 21.64 | 45.24 a | 7.16 | 18,063.7 | 17.66 | 0.00 |
Zn | 20.87 | 8.74 | 102.4 | 142.6 | 37.88 | 9.17 | 21.52 | 16.78 | 16,743.9 | 1.98 | 0.14 |
Cr | 6.93 b | 1.01 | 2.27 e | 3.05 | 6.58 b | 2.75 | 8.52 b | 1.83 | 80.67 | 11.91 | 0.00 |
As | 3.94 e | 3.04 | 0.36 a | 0.16 | 0.17 a | 0.24 | 0.45 a | 0.07 | 19.18 | 17.15 | 0.00 |
Component | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
T | 0.30 | 0.82 | −0.01 | 0.00 | 0.02 |
pH | 0.15 | −0.84 | 0.03 | 0.00 | −0.22 |
DO | −0.35 | 0.26 | −0.10 | −0.59 | 0.13 |
CODCr | 0.25 | 0.12 | 0.77 | 0.06 | 0.12 |
BOD5 | −0.05 | 0.12 | 0.12 | 0.88 | 0.08 |
NH4+-N | 0.89 | 0.32 | 0.05 | 0.12 | 0.06 |
TP | 0.08 | 0.17 | −0.39 | 0.14 | 0.72 |
TN | 0.88 | 0.11 | −0.06 | 0.15 | 0.05 |
Cu | −0.02 | −0.07 | 0.77 | 0.09 | −0.11 |
Zn | −0.12 | −0.06 | −0.32 | 0.11 | −0.79 |
Cr | 0.78 | −0.24 | 0.22 | −0.15 | 0.13 |
As | −0.14 | −0.48 | 0.58 | 0.31 | 0.15 |
Eigenvalue | 2.84 | 2.38 | 1.46 | 1.18 | 1.04 |
% of variance | 21.0 | 15.9 | 15.5 | 11.1 | 10.6 |
Cumulative % | 21.0 | 36.9 | 52.4 | 63.5 | 74.2 |
T | pH | DO | CODCr | BOD5 | NH4+-N | TP | TN | Cu | Zn | Cr | As | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | 1.00 | |||||||||||
pH | −0.57 ** | 1.00 | ||||||||||
DO | 0.03 | −0.22 | 1.00 | |||||||||
CODCr | 0.08 | −0.15 | −0.20 | 1.00 | ||||||||
BOD5 | 0.06 | −0.11 | −0.29 | −0.03 | 1.00 | |||||||
NH4+-N | 0.37 * | −0.25 | −0.20 | 0.21 | 0.04 | 1.00 | ||||||
TP | 0.12 | −0.23 | −0.02 | −0.09 | 0.09 | −0.06 | 1.00 | |||||
TN | 0.00 | 0.14 | −0.20 | −0.11 | 0.02 | 0.70 ** | −0.05 | 1.00 | ||||
Cu | −0.11 | 0.29 | −0.02 | 0.16 | 0.01 | −0.06 | −0.23 | 0.01 | 1.00 | |||
Zn | −0.14 | 0.26 | 0.09 | −0.31 | −0.39 * | −0.35 * | 0.03 | −0.05 | −0.18 | 1.00 | ||
Cr | −0.03 | 0.10 | −0.26 | 0.24 | −0.04 | 0.56 ** | −0.02 | 0.50 ** | 0.06 | −0.32 | 1.00 | |
As | −0.31 | 0.16 | −0.41 * | 0.37 * | 0.38 * | −0.01 | −0.21 | −0.01 | 0.17 | −0.30 | 0.08 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, X.; Wang, H.; Zheng, F.; Huang, C.; Xu, C.; Wu, D. Spatial Distribution Characteristics and Sources of Nutrients and Heavy Metals in the Xiujiang River of Poyang Lake Basin in the Dry Season. Water 2021, 13, 1654. https://doi.org/10.3390/w13121654
Chu X, Wang H, Zheng F, Huang C, Xu C, Wu D. Spatial Distribution Characteristics and Sources of Nutrients and Heavy Metals in the Xiujiang River of Poyang Lake Basin in the Dry Season. Water. 2021; 13(12):1654. https://doi.org/10.3390/w13121654
Chicago/Turabian StyleChu, Xiaodong, Hao Wang, Fangwen Zheng, Cheng Huang, Chunxia Xu, and Daishe Wu. 2021. "Spatial Distribution Characteristics and Sources of Nutrients and Heavy Metals in the Xiujiang River of Poyang Lake Basin in the Dry Season" Water 13, no. 12: 1654. https://doi.org/10.3390/w13121654
APA StyleChu, X., Wang, H., Zheng, F., Huang, C., Xu, C., & Wu, D. (2021). Spatial Distribution Characteristics and Sources of Nutrients and Heavy Metals in the Xiujiang River of Poyang Lake Basin in the Dry Season. Water, 13(12), 1654. https://doi.org/10.3390/w13121654