Different Roles of Top-Down and Bottom-Up Processes in the Distribution of Size-Fractionated Phytoplankton in Gwangyang Bay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Survey
2.2. Sample Preparation
2.3. Dilution Experiments for Determining Top-Down Effects
2.4. Nutrient Addition Experiments for Determining Bottom-Up Effects
2.5. Sample Analysis
2.6. Data Analysis
3. Results
3.1. Environmental Variations
3.2. Phytoplankton Biomass Variations
3.3. Effects of Nutrients and Zooplankton Grazing
4. Discussion
4.1. Environmental Variables in Relation to Size-Fractionated Phytoplankton Dynamics
4.2. Interactive Roles of Top-Down and Bottom-Up Effects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkowski, P.G. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth. Res. 1994, 39, 235–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkowski, P.G.; Barber, R.T.; Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 1998, 281, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunagawa, S.; Coelho, L.P.; Chaffron, S.; Kultima, J.R.; Labadie, K.; Salazar, G.; Djahanschiri, B.; Zeller, G.; Mende, D.R.; Alberti, A.; et al. Structure and function of the global ocean microbiome. Science 2015, 348, 1261359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinov, I.; Doney, S.C.; Lima, I.D. Response of ocean phytoplankton community structure to climate change over the 21st century: Partitioning the effects of nutrients, temperature and light. Biogeosciences 2010, 7, 3941–3959. [Google Scholar] [CrossRef] [Green Version]
- Alexander, H.; Jenkins, B.D.; Rynearson, T.A.; Dyhrman, S.T. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc. Natl. Acad. Sci. USA 2015, 112, E2182–E2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, H.D.R.; Xu, Q.; Ishizaka, J.; Carpenter, E.J.; Yager, P.L.; Goes, J.I. The influence of riverine nutrients in niche partitioning of phytoplankton communities—A contrast between the Amazon River Plume and the ChangJiang (Yangtze) River diluted water of the East China Sea. Front. Mar. Sci. 2018, 5, 343. [Google Scholar] [CrossRef]
- Behrenfeld, M.J. Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms. Ecology 2010, 91, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Landry, M.R.; Kirshtein, J.; Constantinou, J. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Mar. Ecol. Prog. Ser. 1995, 120, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Koch, F.; Gobler, C.J. The interactive roles of nutrient loading and zooplankton grazing in facilitating the expansion of harmful algal blooms caused by the pelagophyte, Aureoumbra lagunensis, to the Indian River Lagoon, FL, USA. Harmful Algae 2015, 49, 162–173. [Google Scholar] [CrossRef]
- Gobler, C.J.; Renaghan, M.J.; Buck, N.J. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnol. Oceanogr. 2002, 47, 129–141. [Google Scholar] [CrossRef]
- Anneville, O.; Chang, C.W.; Dur, G.; Souissi, S.; Rimet, F.; Hsieh, C.H. The paradox of re-oligotrophication: The role of bottom-up versus top-down controls on the phytoplankton community. Oikos 2019, 128, 1666–1677. [Google Scholar] [CrossRef]
- Ibáñez, C.; Alcaraz, C.; Caiola, N.; Rovira, A.; Trobajo, R.; Alonso, M.; Duran, C.; Jiménez, P.J.; Munné, A.; Prat, N. Regime shift from phytoplankton to macrophyte dominance in a large river: Top-down versus bottom-up effects. Sci. Total Environ. 2012, 416, 314–322. [Google Scholar] [CrossRef]
- Thompson, P.A.; Bonham, P.I.; Swadling, K.M. Phytoplankton blooms in the Huon Estuary, Tasmania: Top-down or bottom-up control? J. Plankton Res. 2008, 30, 735–753. [Google Scholar] [CrossRef] [Green Version]
- Stock, C.A.; Powell, T.M.; Levin, S.A. Bottom-up and top-down forcing in a simple size-structured plankton dynamics model. J. Mar. Syst. 2008, 74, 134–152. [Google Scholar] [CrossRef]
- Kim, S.; Park, M.G.; Moon, C.; Shin, K.; Chang, M. Seasonal variations in phytoplankton growth and microzooplankton grazing in a temperate coastal embayment, Korea. Estuar. Coast. Shelf Sci. 2007, 71, 159–169. [Google Scholar] [CrossRef]
- Sin, Y.-S.; Song, E.-S.; Lim, J.-S.; Chang, N.-I. Relative importance of bottom-up vs. top-down controls on size-structured phytoplankton dynamics in a freshwater ecosystem: II. Investigation of controlling factors using statistical modeling analysis. Korean J. Ecol. Environ. 2005, 38, 445–453. [Google Scholar]
- Jang, M.-C.; Shin, K.; Lee, T.; Noh, I. Feeding selectivity of calanoid copepods on phytoplankton in Jangmok Bay, south coast of Korea. Ocean Sci. J. 2010, 45, 101–111. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kim, M.-W.; Lee, M.-O.; Kang, T.-S. The Characteristics of Estuarine Tidal Circulation in Gwangyang Bay. Proc. Korean Soc. Mar. Environ. Energy 2005, 5, 139–143. [Google Scholar]
- Kwon, K.-Y.; Moon, C.-H.; Kang, C.-K.; Kim, Y.-N. Distribution of particulate organic matter along the salinity gradients in the Seomjin River estuary. J. Korean Fish. Aquat. Sci. 2002, 35, 86–96. [Google Scholar]
- Jang, P.-G.; Lee, W.-J.; Jang, M.-C.; Lee, J.-D.; Lee, W.-J.; Chang, M.; Hwang, K.-C.; Shin, K.-S. Spatial and temporal distribution of inorganic nutrients and factors controlling their distributions in Gwangyang Bay. Ocean Polar Res. 2005, 27, 359–379. [Google Scholar]
- Kim, S.-J.; Lee, H.-I.; Kim, D.-C.; Shin, I.-C. Changes in sedimentary process by POSCO’s dredging and reclaming in the Kwangyang Bay. J. Korean Soc. Mar. Environ. Eng. 2000, 35, 61–65. [Google Scholar]
- Baek, S.-H.; Kim, D.; Son, M.; Yun, S.-M.; Kim, Y.-O. Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea. Estuar. Coast. Shelf Sci. 2015, 163, 265–278. [Google Scholar] [CrossRef]
- Kang, Y.; Kang, Y.-H.; Kim, J.-K.; Kang, H.Y.; Kang, C.-K. Year-to-year variation in phytoplankton biomass in an anthropogenically polluted and complex estuary: A novel paradigm for river discharge influence. Mar. Pollut. Bull. 2020, 161, 111756. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Study on the Zooplankton Community of Gwangyang Bay, in Spring 2006. Master’s Thesis, Hanyang University, Seoul, Korea, 2009. [Google Scholar]
- Lee, S. Long Term Variation of Zooplankton Community in the Northern Channel of Gwangyang Bay. Master’s Thesis, Chonnam National University, Yeosu, Korea, 2012. [Google Scholar]
- Lee, E.H.; Seo, M.H.; Yoon, Y.-H.; Choi, S.-D.; Soh, H.Y. Environmental factors affecting zooplankton community in Gwangyang Bay. Korean J. Environ. Biol. 2017, 35, 631–639. [Google Scholar] [CrossRef]
- Lee, M.; Park, B.S.; Baek, S.H. Tidal influences on biotic and abiotic factors in the Seomjin River Estuary and Gwangyang Bay, Korea. Estuaries Coasts 2018, 41, 1977–1993. [Google Scholar] [CrossRef]
- Soh, H.; Suh, H.-L. Seasonal fluctuation of the abundance of the planktonic copepods in Kwangyang Bay. Korean J. Environ. Biol. 1993, 11, 26–34. [Google Scholar]
- Jo, H.; Kim, D.-K.; Park, K.; Kwak, I.-S. Discrimination of spatial distribution of aquatic organisms in a coastal ecosystem using eDNA. Appl. Sci. 2019, 9, 3450. [Google Scholar] [CrossRef] [Green Version]
- Huh, S.H.; Kwak, S.N. Species composition and seasonal variations of fishes in eelgrass (Zostera marina) bed in Kwangyang Bay. Korean J. Ichthyol. 1997, 9, 202–220. [Google Scholar]
- Kang, Y.; Tang, Y.Z.; Taylor, G.T.; Gobler, C.J. Discovery of a resting stage in the harmful, brown-tide-causing pelagophyte, Aureoumbra lagunensis: A mechanism potentially facilitating recurrent blooms and geographic expansion. J. Phycol. 2017, 53, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Kudela, R.M.; Gobler, C.J. Quantifying nitrogen assimilation rates of individual phytoplankton species and plankton groups during harmful algal blooms via sorting flow cytometry. Limnol. Oceanogr. Methods 2017, 15, 706–721. [Google Scholar] [CrossRef]
- Ojala, A. Studies of Growth Rates of Some Freshwater Cryptophyte Algae; Loughborough University: Loughborough, UK, 1991. [Google Scholar]
- Bae, S.W.; Kim, D.; Kim, Y.O.; Moon, C.H.; Baek, S.H. The influences of additional nutrients on phytoplankton growth and horizontal phytoplankton community distribution during the autumn season in Gwangyang Bay, Korea. Korean J. Environ. Biol. 2014, 32, 35–48. [Google Scholar] [CrossRef]
- Shim, J.H.; Shin, Y.K.; Lee, W.H. On the phyroplankton distribution in the Kwangyang Bay. J. Korean Soc. Oceanogr. 1984, 19, 176–186. [Google Scholar]
- Klaveness, D. Biology and ecology of the Cryptophyceae: Status and challenges. Biol. Oceanogr. 1989, 6, 257–270. [Google Scholar]
- Šupraha, L.; Bosak, S.; Ljubešić, Z.; Mihanović, H.; Olujić, G.; Mikac, I.; Viličić, D. Cryptophyte bloom in a Mediterranean estuary: High abundance of Plagioselmis cf. prolonga in the Krka River estuary (Eastern Adriatic Sea). Sci. Mar. 2014, 78, 329–338. [Google Scholar]
- Dortch, Q.; Whitledge, T.E. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf Res. 1992, 12, 1293–1309. [Google Scholar] [CrossRef]
- Jang, M.-C.; Jang, P.-G.; Shin, K.-S.; Park, D.-W.; Jang, M. Seasonal variation of zooplankton community in Gwangyang Bay. Korean J. Environ. Biol. 2004, 22, 11–29. [Google Scholar]
- Tiselius, P.; Saiz, E.; Kiørboe, T. Sensory capabilities and food capture of two small copepods, Paracalanus parvus and Pseudocalanus sp. Limnol. Oceanogr. 2013, 58, 1657–1666. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Kim, D.; Liu, H.; Kang, C.-K. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in Gwangyang Bay of the southern coast of the Korean Peninsula. Biogeosciences 2018, 15, 2055–2073. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Landry, M.R.; Huang, B.; Liu, H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 2012, 57, 519–526. [Google Scholar] [CrossRef]
- Tester, P.A.; Turner, J.T. How long does it take copepods to make eggs? J. Exp. Mar. Biol. Ecol. 1990, 141, 169–182. [Google Scholar] [CrossRef]
- Jones, R.H.; Flynn, K.J. Nutritional status and diet composition affect the value of diatoms as copepod prey. Science 2005, 307, 1457–1459. [Google Scholar] [CrossRef]
- Boyd, P.W.; Rynearson, T.A.; Armstrong, E.A.; Fu, F.; Hayashi, K.; Hu, Z.; Hutchins, D.A.; Kudela, R.M.; Litchman, E.; Mulholland, M.R.; et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters—Outcome of a scientific community—Wide study. PLoS ONE 2013, 8, e63091. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, S.E.; Lomas, M.; Casey, J.R.; Ward, B.B.; Sigman, D.M. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea. Nat. Geosci. 2011, 4, 717–722. [Google Scholar] [CrossRef]
- Lomas, M.; Glibert, P. Interactions between NH+4 and NO−3 uptake and assimilation: Comparison of diatoms and dinoflagellates at several growth temperatures. Mar. Biol. 1999, 133, 541–551. [Google Scholar] [CrossRef]
- Lomas, M.W.; Bonachela, J.A.; Levin, S.A.; Martiny, A.C. Impact of ocean phytoplankton diversity on phosphate uptake. Proc. Natl. Acad. Sci. USA 2014, 111, 17540–17545. [Google Scholar] [CrossRef] [Green Version]
- Orchard, E.D.; Ammerman, J.W.; Lomas, M.W.; Dyhrman, S.T. Dissolved inorganic and organic phosphorus uptake in Trichodesmium and the microbial community: The importance of phosphorus ester in the Sargasso Sea. Limnol. Oceanogr. 2010, 55, 1390–1399. [Google Scholar] [CrossRef]
- Ger, K.A.; Naus-Wiezer, S.; de Meester, L.; Lürling, M. Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnol. Oceanogr. 2019, 64, 1214–1227. [Google Scholar] [CrossRef]
- Motwani, N.H.; Gorokhova, E. Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis. PLoS ONE 2013, 8, e79230. [Google Scholar] [CrossRef] [Green Version]
- Sailley, S.F.; Polimene, L.; Mitra, A.; Atkinson, A.; Allen, J.I. Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling. J. Plankton Res. 2015, 37, 519–529. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Oh, Y. Different Roles of Top-Down and Bottom-Up Processes in the Distribution of Size-Fractionated Phytoplankton in Gwangyang Bay. Water 2021, 13, 1682. https://doi.org/10.3390/w13121682
Kang Y, Oh Y. Different Roles of Top-Down and Bottom-Up Processes in the Distribution of Size-Fractionated Phytoplankton in Gwangyang Bay. Water. 2021; 13(12):1682. https://doi.org/10.3390/w13121682
Chicago/Turabian StyleKang, Yoonja, and Yeongji Oh. 2021. "Different Roles of Top-Down and Bottom-Up Processes in the Distribution of Size-Fractionated Phytoplankton in Gwangyang Bay" Water 13, no. 12: 1682. https://doi.org/10.3390/w13121682
APA StyleKang, Y., & Oh, Y. (2021). Different Roles of Top-Down and Bottom-Up Processes in the Distribution of Size-Fractionated Phytoplankton in Gwangyang Bay. Water, 13(12), 1682. https://doi.org/10.3390/w13121682