Potential Climate Change Impacts on Water Resources in Egypt
Abstract
:1. Introduction
2. Study Area
3. Methodology
- Define the Characteristics of the study area;
- Collect climatic data, water resources data and crop data;
- Use CropWat8.0 model to calculate irrigation water requirements (IWR) under current and future climate conditions.
3.1. Calculation of Irrigation Water Requirements
3.1.1. Calculation of the Reference Crop Evapotranspiration (ETo)
3.1.2. Calculation of the Crop Water Use (Crop Evapotranspiration, ETc)
3.1.3. Calculation of the Irrigation Water Requirements (IWR)
- -
- 60% for surface irrigation system [21];
- -
- 75% and 80% for the sprinkler and drip irrigation systems, respectively.
- Winter crops: barley, faba bean (dry), wheat, potato, and tomato;
- Summer crops: cotton, maize, sunflower, potato, and tomato;
- Nili crops: potato and tomato.
4. Results
4.1. Climate Change Impacts
4.2. Impact of Climate Change at the National Level of the Study Area
4.3. Impact of Climate Change on Irrigation Water Requirements (IWR) in Egypt
4.3.1. Winter Crops
4.3.2. Summer Crops
4.3.3. Nili Crops
4.4. Total Irrigation Water Requirements (IWR) According to Cropped Area
4.4.1. Old Lands
4.4.2. New Lands
4.4.3. The total Increase in IWR due to Climate Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hammond, M. The Grand Ethiopian Renaissance Dam and the Blue Nile: Implications for Transboundary Water Governance; Discussion Paper 1307; Global Water Forum: Canberra, Australia, 2013. [Google Scholar]
- Cunha, A.D.; Coelho, A.B.; Féres, J.G.; Braga, M.J. Effects of Climate Change on Irrigation Adoption in Brazil; Acta Scientiarum: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Fader, S.; Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef] [Green Version]
- Rolim, J.; Teixeira, J.; Catalão, J.; Shahidian, S. The Impacts of Climate Change on Irrigated Agriculture in Southern Portugal. Irrig. Drain. 2017. [Google Scholar] [CrossRef]
- Kakumanu, K.R.; Kaluvai, Y.R.; Nagothu, U.S.; Lati, N.R.; Kotapati, G.R.; Karanam, S. Building Farm-Level Capacities In Irrigation Water Management To Adapt To Climate Change. Irrig. Drain. 2018. [Google Scholar] [CrossRef]
- Bocci, M.; Smanis, T. Assessment of the impacts of Climate Change on the Agriculture Sector in the Southern Mediterranean. Union-For-The-Mediterranean, A DGNEAR Project Led by Atkins Together with Pescares Italia Srl, GIZ and SML. 2019. Available online: https://ufmsecretariat.org/wp-content/uploads/2019/04/Climate-Change-impact-on-Agriculture.pdf (accessed on 22 December 2020).
- Ritchie, H.; Roser, M. CO2 and Greenhouse Gas Emissions. OurWorldInData.org. August 2020. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 15 January 2021).
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate Change Vulnerability, Water Resources and Social Implications in North Africa. Regional Environmental Change; Springer: Berlin/Heidelberg, Germany, 2020; Volume 20. [Google Scholar] [CrossRef] [Green Version]
- Driouech, F.; ElRhaz, K.; Moufouma-Okia, W.; Arjdal, K.; Balhane, S. Assessing Future Changes of Climate Extreme Events in the CORDEX-MENA Region Using Regional Climate Model ALADIN-Climate. Earth Syst. Environ. 2020, 4, 477–492. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Almazroui, M.; Bucchignani, E.; Driouech, F.; El Rhaz, K.; Kurnaz, L.; Nikulin, G.; Ntoumos, A.; Ozturk, T.; et al. Business-as-usual will lead to super and ultra-extreme heatwaves in the Middle East and North Africa. NPJ Clim. Atmos. Sci. 2021, 4, 20. [Google Scholar] [CrossRef]
- Valipour, M.; Bateni, S.; Jun, C. Global Surface Temperature: A New Insight. Climate 2021, 9, 81. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; El-Marsafawy, S.M.; Lewis, L.N. Sustainable Agriculture and Climate Changes in Egypt; INRA-CMSE-PME, UMR1347; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- El-Din, M.M.N. Climate Change Risk Management in Egypt; UNESCO-Cairo Office: Cairo, Egypt, 2013. [Google Scholar]
- Sadik, A.; El-Solh, M.; Saab, N. Arab Environment 7, FOOD Security, Challenges and Prospects. Annual Report of the Arab Forum for Environment & Development; AFED: Beirut, Lebanon, 2014. [Google Scholar]
- El Agroudy, N.; Shafiq, F.; Mokhtar, S. The Impact of Establishing the Ethiopian Dam Renaissance on Egypt. J. Basic Appl. 2014, 4, 1–5. [Google Scholar]
- Mahmoud, M.A.; El-Bably, A.Z. Crop Water Requirements and Irrigation Efficiencies in Egypt. Conventional Water Resources and Agriculture in Egypt; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wigley, T. MAGICC/SCENGEN 5.3: USER MANUAL (Version 2). National Center for Atmospheric Research, Boulder, CO 80307. Version 1, June 2008 Version 2, September 2008. 2008. Available online: http://www.cgd.ucar.edu/cas/wigley/magicc/UserMan5.3.v2.pdf (accessed on 12 January 2021).
- Robinson, S.; d’Croz, D.M.; Islam, S.; Sulser, T.B.; Robertson, R.D.; Zhu, T.; Gueneau, A.; Pitois, G.; Rosegrant, M.W. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description for Version 3. Available online: https://www.ifpri.org/publication/international-model-policy-analysis-agricultural-commodities-and-trade-impact-0 (accessed on 12 June 2020).
- Fordham, D.A.; Wigley, T.M.L.; Watts, M.J.; Brook, B.W. Strengthening forecasts of climate change impacts with multi-model ensemble averaged projections using MAGICC/SCENGEN 5.3. Ecography 2012, 35, 4–8. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guide-lines for computing crop water requirements. In FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Jensen, M.E. Design and Operation of Farm Irrigation System; (ASAE Monograph, No. 3); American Society of Agricultural Engineers: St. Joseph, MI, USA, 1980. [Google Scholar]
- Nakicenovic, N.; Swart, R. Special Report of Working Group III of the Intergovernmental Panel on Climate Change. In Published for the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- IPCC Report. Chapter 5: Food Security—IPCC SRCCL. In Final Government Distribution; 2019; Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/2f.-Chapter-5_FINAL.pdf (accessed on 10 August 2020).
- Santer, B.D.; Wigley, T.M.L.; Schlesinger, M.E.; Mitchell, J.F.B. Developing climate scenarios from equilibrium GCM results. Max Planck Inst. Meteorol. Tech. Rep. 1990, 47, 29. [Google Scholar]
- Chowdhury, S.; Al-Zahrani, M.; Abbas, A. Implications of climate change on crop water requirements in arid region: An example of Al-Jouf, Saudi Arabia. J. King Saud Univ. Eng. Sci. 2016, 28, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Radwan, G.; Ellah, A. Water resources in Egypt and their challenges, Lake Nasser case study. Egypt. J. Aquat. Res. 2020, 46, 1–12. [Google Scholar]
- Khordagui, H. Climate change in ESCWA region: Reasons for concern. In Proceedings of the Expert Group Meeting on Trade and Environment Priorities in the Arab Region, Cairo, Egypt, 11–13 November 2007. [Google Scholar]
- IPCC. Climate Change 2007: The Physical Science Basis, Summary for Policy Makers. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, WMO; UNEP: Nairobi, Kenya, 2007; 18p. [Google Scholar]
Crop | Area (ha) * | IWR (Current) | Total IWR (Current) | IWR (2050) | Total IWR (2050) | IWR (2100) | Total IWR (2100) | |
---|---|---|---|---|---|---|---|---|
Winter crops | Barley | 2488 | 4777 | 11,885,176 | 5090 | 12,664,611 | 5377 | 13,378,252 |
Faba bean (dry) | 654 | 5023 | 3,284,969 | 5358 | 3,503,950 | 5667 | 3,706,327 | |
Wheat | 251,939 | 6738 | 1,697,467,006 | 7155 | 1,802,567,559 | 7535 | 1,898,444,345 | |
Potato | 11,393 | 5764 | 65,672,417 | 6113 | 69,650,473 | 6439 | 73,355,096 | |
Tomato | 11,767 | 6076 | 71,494,331 | 6520 | 76,723,455 | 6881 | 80,964,151 | |
Summer crops | Cotton | 10,538 | 13,373 | 140,919,405 | 14,034 | 147,887,950 | 14,631 | 154,185,576 |
Maize | 266,390 | 10,837 | 2,886,957,227 | 11,384 | 3,032,554,161 | 11,877 | 3,163,958,428 | |
Sunflower | 1320 | 7445 | 9,827,400 | 7810 | 10,308,613 | 8138 | 10,742,453 | |
Potato | 5540 | 8379 | 46,419,352 | 8865 | 49,114,562 | 9288 | 51,456,136 | |
Tomato | 9387 | 13,062 | 122,611,951 | 13,740 | 128,977,902 | 14,344 | 134,643,999 | |
Nili crops | Potato | 16,839 | 10,970 | 184,720,088 | 11,514 | 193,875,827 | 12,025 | 202,497,020 |
Tomato | 9435 | 12,199 | 115,098,613 | 12,822 | 120,972,425 | 13,411 | 126,531,213 |
Crop | Area (ha) * | IWR (Current) | Total IWR (Current) | IWR (2050) | Total IWR (2050) | IWR (2100) | Total IWR (2100) | |
---|---|---|---|---|---|---|---|---|
Winter crops | Barley | 834 | 3821 | 3,186,992 | 4072 | 3,396,233 | 4302 | 3,587,609 |
Faba bean (dry) | 112 | 3768 | 421,960 | 4018 | 450,049 | 4250 | 476,042 | |
Wheat | 14,983 | 5391 | 80,768,359 | 5724 | 85,760,028 | 6028 | 90,321,519 | |
Potato | 676 | 4324 | 2,922,855 | 4585 | 3,099,516 | 4829 | 3,264,376 | |
Tomato | 7187 | 4558 | 32,754,753 | 4890 | 35,145,628 | 5160 | 37,088,214 | |
Summer crops | Cotton | 0 | 10,030 | 0 | 10,525 | 0 | 10,974 | 0 |
Maize | 9608 | 8128 | 78,089,020 | 8538 | 82,032,303 | 8908 | 85,586,863 | |
Sunflower | 202 | 5584 | 1,127,918 | 5857 | 1,183,148 | 6104 | 1,232,941 | |
Potato | 294 | 6284 | 1,847,423 | 6649 | 1,954,831 | 6966 | 2,048,029 | |
Tomato | 4569 | 9796 | 44,759,066 | 10,305 | 47,083,735 | 10,758 | 49,152,160 | |
Nili crops | Potato | 500 | 8228 | 4,113,750 | 8635 | 4,317,563 | 9019 | 4,509,554 |
Tomato | 37 | 9149 | 338,504 | 9616 | 355,801 | 10,058 | 372,151 |
Crop | Total IWR (Current) | Total IWR (2050) | Amount of Excess of IW | Total IWR (2100) | Amount of Excess of IW | |
---|---|---|---|---|---|---|
Winter crops | Barley | 15,072,168 | 16,060,844 | 988,676 | 16,965,861 | 1,893,693 |
Faba bean | 3,706,929 | 3,953,999 | 247,070 | 4,182,369 | 475,440 | |
Wheat | 1,778,235,364 | 1,888,327,587 | 110,092,223 | 1,988,765,864 | 210,530,500 | |
Potato | 68,595,272 | 72,749,989 | 4,154,717 | 76,619,472 | 8,024,200 | |
Tomato | 104,249,083 | 111,869,083 | 7,619,999 | 118,052,365 | 13,803,282 | |
Summer crops | Cotton | 140,919,405 | 147,887,950 | 6,968,545 | 154,185,576 | 13,266,171 |
Maize | 2,965,046,247 | 3,114,586,464 | 149,540,218 | 3,249,545,291 | 284,499,045 | |
Sunflower | 10,955,318 | 11,491,761 | 536,444 | 11,975,394 | 1,020,077 | |
Potato | 48,266,775 | 51,069,393 | 2,802,618 | 53,504,164 | 5,237,389 | |
Tomato | 167,371,017 | 176,061,637 | 8,690,620 | 183,796,159 | 16,425,142 | |
Nili crops | Potato | 188,833,838 | 198,193,389 | 9,359,551 | 207,006,574 | 18,172,736 |
Tomato | 115,437,117 | 121,328,226 | 5,891,109 | 126,903,363 | 11,466,246 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, S.M.; Wahed, O.; El-Nashar, W.Y.; El-Marsafawy, S.M.; Zeleňáková, M.; Abd-Elhamid, H.F. Potential Climate Change Impacts on Water Resources in Egypt. Water 2021, 13, 1715. https://doi.org/10.3390/w13121715
Mostafa SM, Wahed O, El-Nashar WY, El-Marsafawy SM, Zeleňáková M, Abd-Elhamid HF. Potential Climate Change Impacts on Water Resources in Egypt. Water. 2021; 13(12):1715. https://doi.org/10.3390/w13121715
Chicago/Turabian StyleMostafa, Soha M., Osama Wahed, Walaa Y. El-Nashar, Samia M. El-Marsafawy, Martina Zeleňáková, and Hany F. Abd-Elhamid. 2021. "Potential Climate Change Impacts on Water Resources in Egypt" Water 13, no. 12: 1715. https://doi.org/10.3390/w13121715
APA StyleMostafa, S. M., Wahed, O., El-Nashar, W. Y., El-Marsafawy, S. M., Zeleňáková, M., & Abd-Elhamid, H. F. (2021). Potential Climate Change Impacts on Water Resources in Egypt. Water, 13(12), 1715. https://doi.org/10.3390/w13121715