Recent Changes in Temperature and Precipitation of the Summer and Autumn Seasons over Fujian Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Data Processing Method
2.3.1. Climate Tendency Rate
2.3.2. Pearson Correlation
2.3.3. Sen’s Slope Estimator
2.3.4. Mann-Kendall Trend Testing
2.3.5. Morlet Wavelet Analysis
3. Results
3.1. Temporal Variations
3.2. Temporal Scales Variations
3.3. Time Period Determination
3.4. Correlation Analysis
4. Discussion
5. Conclusions
- (1)
- In the summer and autumn of Fujian from 1971 to 2018, the average annual temperature and precipitation showed an obvious upward trend, but the climate tendency rate was different.
- (2)
- There are three negative centers and two positive centers in the 28a time scale of summer autumn oscillation.
- (3)
- In the 28a scale of the first major cycle, there are three top abrupt climate change points of Fujian summer and autumn average annual temperature and annual precipitation, which are in 1971, 1987, and 2005, and three valley abrupt climate change points are in 1977, 1996, and 2014. There are three quasi oscillations of fluctuation alternation.
- (4)
- From the change characteristics of the first major cycle of annual average temperature and annual precipitation in summer and autumn in Fujian from 1971 to 2018, the annual average temperature and precipitation in summer and autumn will continue to increase in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.W.; Luo, Y.; Zhao, Z.Z. The Sciences of Gloal Warming; Meteorological Press: Beijing, China, 2013; p. 203. [Google Scholar]
- Liu, Y.J.; Lin, E.D. Effects of climate change on agriculture in different regions of China. Clim. Change Res. 2007, 3, 229–233. [Google Scholar]
- Xu, Y.L.; Zhao, Y.C.; Zhai, P.M. Advances in scientific understanding on climate change and food security from IPCC special report SRCCL. Clim. Change Res. 2020, 16, 37–49. [Google Scholar]
- Zhao, Z.Z.; Luo, Y.; Huang, J.B. Review IPCC 30 years (1988–2018). Clim. Change Res. 2018, 14, 540–546. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis by IPCC WG I; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Liu, D.X.; Dong, A.X.; Deng, Z.Y. Impact of climate warming on agriculture in northwest China. J. Nat. Resour. 2005, 20, 119–125. [Google Scholar]
- Guo, J.P. Advances in impacts of climate change on agricultural production in China. J. Appl. Meteor. Sci. 2015, 26, 1–11. [Google Scholar]
- Yun, Y.R.; Fang, X.Q.; Wang, L.Y. Adaptation of China’s crop planting boundaries to climate warming. Crops 2007, 3, 20–23. [Google Scholar]
- Li, Z.G.; Tang, H.J.; Yang, P.; Zhou, Q.; Wu, W.; Zou, J.; Zhang, L.; Chang, H. Responses of cropland phenophases to agricultural thermal resources change in northeast China. Acta Geogr. Sin. 2011, 66, 928–936. [Google Scholar]
- Liu, X.R.; Li, G.P.; Fan, G.Z.; Gheng, B.-Y.; Li, H.-Q. Spatial and temporal characteristics of temperature changes in southwest China during 1961–2000. Sci. Meteor. Sin. 2008, 21, 30–36. [Google Scholar]
- Luo, Y.; Gao, P.; Mu, X. Influence of Meteorological Factors on the Potential Evapotranspiration in Yanhe River Basin, China. Water 2021, 13, 1222. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, S.K. Rainfall trend in Ganga-Brahmputra-Meghna river basins of India (1951–2004). J. Hydrol. 2010, 33, 59–66. [Google Scholar]
- Cui, L.; Wang, L.; Lai, Z.; Tian, Q.; Liu, W.; Li, J. Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze river basin, China during 1960–2015. J. Atmos. Sol. Terr. Phys. 2017, 164, 48–59. [Google Scholar] [CrossRef]
- Chang, X.; Xu, Z.; Zhao, G.; Cheng, T.; Song, S. Spatial and temporal variations of precipitation during 1979–2015 in Jinan City, China. J. Water Clim. Change 2018, 9, 540–554. [Google Scholar] [CrossRef]
- Wang, S.; Jiao, S.; Xin, H. Spatio-temporal characteristics of temperature and precipitation in Sichuan province, southwestern China, 1960–2009. Quat. Int. 2013, 286, 103–115. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Guhathakurta, P.; Kisi, O. Spatial-temporal trend analysis of seasonal and annual rainfall (1966–2015) using innovative trend analysis method with significance test. Arab. J. Geosci. 2019, 12, 10. [Google Scholar] [CrossRef]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Moura, J.P.; Pacheco, F.A.L. Rainwater harvesting in catchments for agroforestry uses: A study focused on the balance between sustainability values and storage capacity. Sci. Total Environ. 2015, 613, 1079–1092. [Google Scholar]
- Myronidis, D.; Theofanous, N. Changes in climatic patterns and tourism and their concomitant effect on drinking water transfers into the Region of South Aegean, Greece. Stoch. Environ. Res. Risk Assess. 2021, 1–15. [Google Scholar] [CrossRef]
- Huagn, R.; Hu, Z.Y.; Guan, T. Interpolation of Temperature Data in Northern Qinghai-Xizang Plateau and Preliminary Analysis on Its Recent Variation. Plateau Meteorol. 2014, 3, 637–646. [Google Scholar]
- Li, G.D.; Tian, H.F.; Chen, C.; Liu, Y.R.; Zhang, J.H. Multi-time Scales analysis of climate variation in the period of winter wheat growing in eastern He’nan farming region. Chin. Agric. Sci. Bull. 2013, 23, 180–193. [Google Scholar]
- Si, P.; Hao, L.H.; Luo, C.J.; Cao, X.C.; Liang, D.P. The interpolation and homogenization of long-term temperature time series at baoding observation station in Hebei Province. Adv. Clim. Change Res. 2017, 13, 41–51. [Google Scholar] [CrossRef]
- Qiu, H.J.; Cao, M.M.; Zeng, B. Wavelet analysis on the temporal series of precipitation in Xi’an. Chin. J. Agrometeorol. 2011, 1, 23–27. [Google Scholar]
- Lu, X.H.; Zhang, H.N.; Hu, Y.Y. Spatiotemporal variation characteristics of precipitation at multi-scale in Ganjiang River basin from 1966 to 2015. Res. Soil Water Conserv. 2021, 2, 168–175. [Google Scholar]
- Ti, J.; Yang, Y.; Yin, X.; Liang, J.; Pu, L.; Jiang, Y.; Wen, X.Y.; Chen, F. Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015. Water 2018, 10, 789. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.M.D.; Santos, C.A.G.; Moreira, M.; Corte-Real, J.; Medeiros, I.C. Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Rahman, A.U.; Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar] [CrossRef]
- Sonali, P.; Nagesh-Kumar, D. Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol. 2013, 476, 212–227. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhang, Y.; Hong, S. Temporal and spatial variations of precipitation in Northwest China during 1960–2013. Atmos. Res. 2017, 183, 283–295. [Google Scholar] [CrossRef]
- Yao, N.; Li, Y.; Lei, T.; Peng, L. Drought evolution, severity and trends in mainland China over 1961–2013. Sci. Total Environ. 2018, 616–617, 73–89. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Ji, G.; Yue, Y. Quantifying the Impacts of Climate Change and Human Activities on Runoff in the Lancang River Basin Based on the Budyko Hypothesis. Water 2020, 12, 3501. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Change 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Mashagbah, A.; Farajat, M. Assessment of spatial and temporal variability of rainfall data using kriging, Mann kendall test and the Sen’s slope estimates in Jordan from 1980 to 2007. Res. J. Environ. Earth Sci. 2013, 5, 611–618. [Google Scholar]
- Kumar, S.P. Estimates of the regression coefficient based on kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar]
- Myronidis, D.; Fotakis, D.; Ioannou, K.; Sgouropoulou, K. Comparison of ten notable meteorological drought indices on tracking the effect of drought on streamflow. Hydrolog. Sci. J. 2018, 63, 2005–2019. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K. Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res. 2014, 137, 183–194. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Alifujiang, Y.; Abuduwaili, J.; Ge, Y. Trend Analysis of Annualand Seasonal River Runoff by Using Innovative Trend Analysis with Significant Test. Water 2021, 13, 95. [Google Scholar] [CrossRef]
- Partal, T. Wavelet transform-based analysis of periodicities and trends of Sakarya basin (Turkey) streamflow data. River Res. Appl. 2010, 26, 695–711. [Google Scholar] [CrossRef]
- Shi, J.L.; Wang, X.R.; Li, S.F.; Li, N. Variation characteristics of air temperature and precipitation in He’nan province in Recent 50 years. Res. Soil Water Conserv. 2017, 24, 151–156. [Google Scholar]
- Talaee, P.H.; Tabari, H. Temporal variability of precipitation over Iran: 1966–2005. J. Hydrol. 2011, 396, 313–320. [Google Scholar]
- Huang, W.J.; Yang, J.J.; Liu, Y.; Yu, E.T. Spatiotemporal Variations of Drought in the Arid Region of Northwestern China during 1950–2012. Adv. Meteorol. 2021, 2021, 6680067. [Google Scholar] [CrossRef]
- Liu, K.; Nie, G.G.; Zhang, S.S. Spatiotemporal evolution of temperature and precipitation in China from 1951 to 2018. Adv. Earth Sci. 2020, 35, 1113–1126. (In Chinese) [Google Scholar]
- Hu, Z.Z. Long-term climate variations in China and global warming signals. J. Geophys. Res. 2003, 108, 4614. [Google Scholar] [CrossRef]
- Zhang, H.L.; Chen, Y.; Ren, G.X.; Yang, G.H. The characteristics of precipitation variation of Weihe River Basin in Shaanxi Province during recent 50 years. Agric. Res. Arid Areas 2008, 26, 236–241. [Google Scholar]
- Yang, S.Y.; Sun, F.H.; Ma, J.Z. Evolvement of Precipitation Extremes in Northeast China on the Background of Climate Warming. Sci. Geogr. Sin. 2008, 28, 224–228. [Google Scholar] [CrossRef]
- Liu, S.C.; Fu, C.B.; Chen, J.P. Temperature dependence of global precipitation extremes. Geophys. Res. Lett. 2009, 17, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Sulikowska, A.; Wypych, A. Seasonal Variability of Trends in Regional Hot and Warm Temperature Extremes in Europe. Atmosphere 2021, 12, 612. [Google Scholar] [CrossRef]
- Saddique, Q.; Cai, H.J.; Xu, J.T.; Ajaz, A.; He, J.Q.; Yu, Q.; Wang, Y.F.; Chen, H.; Khan, M.I.; Liu, D.L.; et al. Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1523–1543. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Q.; Lu, G.; Liu, X.; Wang, Y.; Wang, D.; Liu, W.; Yue, P.; Zhu, B.; Duan, X. Climate Transition from Warm-Dry to Warm-Wet in Eastern Northwest China. Atmosphere 2021, 12, 548. [Google Scholar] [CrossRef]
- Lin, Z.X.; Zhu, J.J.; Hua, W.; Fan, G.Z. Influence of Asian-Pacific Oscillation on Precipitation in Central Eastern China during Autumn (1960–2016). Adv. Meteorol. 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Niu, N.; Li, J. Interannual variability of autumn precipitation over South China and its relation to atmospheric circulation and SST anomalies. Adv. Atmos. Sci. 2008, 25, 117–125. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Zhou, W.; Huang, G. Teleconnected influence of tropical Northwest Pacific sea surface temperature on interannual variability of autumn precipitation in Southwest China. Clim. Dyn. 2015, 45, 2527–2539. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Chen, J.; Chen, X. Long-term change in precipitation structure over the karst area of Southwest China. Int. J. Climatol. 2016, 36, 2417–2434. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Huang, J.; Qian, Y. Effects of aerosols on autumn precipitation over mid-Eastern China. J. Trop. Meteorol. 2014, 20, 242–250. [Google Scholar]
- Qin, M.; Li, D.; Dai, A.; Hua, W.; Ma, H.D. The influence of the pacific decadal oscillation on North Central China precipitation during boreal autumn. Int. J. Climatol. 2018, 38, 821–831. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, F.F.; Turner, A. Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett. 2014, 41, 4020–4026. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Zhang, Q.; Singh, V.P. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Climatol. 2015, 35, 3556–3567. [Google Scholar] [CrossRef]
- Sun, J.S.; Shu, W.-J. The Effect of Urban Heat Island on Winter and Summer Precipitation in Beijing Region. Chin. J. Atmos. Sci. 2007, 31, 311–320. [Google Scholar]
- Zheng, Z.F.; Wang, Z.W.; Gao, H. Characteristics of Extreme Precipitation Events in Summer and Its Effect on Urbanization in Beijing Area. Meteorol. Mon. 2013, 39, 1635–1641. [Google Scholar]
- Manton, M.J.; Della-Marta, P.M.; Haylock, M.R.; Hennessy, H.J.; Nicholls, N.; Chambers, L.E.; Collins, D.A.; Daw, G.; Finet, A.; Gunawan, D.; et al. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol. 2001, 21, 269–284. [Google Scholar] [CrossRef]
- Tanteliniaina, M.F.R.; Chen, J.; Adyel, T.M.; Zhai, J. Elevation Dependence of the Impact of Global Warming on Rainfall Variations in a Tropical Island. Water 2020, 12, 3582. [Google Scholar] [CrossRef]
- Ogurtsov, M. Decadal and Bi-Decadal Periodicities in Temperature of Southern Scandinavia: Manifestations of Natural Variability or Climatic Response to Solar Cycles? Atmosphere 2021, 12, 676. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M. Changes in the Compound Drought and Extreme Heat Occurrence in the 1961–2018 Period at the European Scale. Water 2020, 12, 3543. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, K. A new statistical downscaling model for autumn precipitation in China. Int. J. Climatol. 2013, 33, 1321–1336. [Google Scholar] [CrossRef]
- Li, F.; Zhou, M.J.; Shao, J.Q.; Chen, Z.H.; Wei, X.L.; Yang, J.C. Maize, wheat and rice production potential changes in China under the background of climate change. Agric. Syst. 2020, 182, 102853. [Google Scholar]
- Wang, J.X.; Mendelsohn, R.; Dinar, A.; Huang, J.K.; Rozelle, S.; Zhang, L.J. The impact of climate change on China’s agriculture. Agric. Econ. 2009, 40, 323–337. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Yang, M.; Gou, X.; Liu, B.; Hao, Y.; Xu, S.; Xue, J.; Qin, X.; Siddique, K.H.M. Multi-Site Evaluation of Accumulated Temperature and Rainfall for Maize Yield and Disease in Loess Plateau. Agriculture 2021, 11, 373. [Google Scholar] [CrossRef]
- Wu, J.Z.; Zhang, J.; Ge, Z.M.; Xing, L.W.; Han, S.Q.; Shen, C.; Kong, F.T. Impact of climate change on maize yield in China from 1979 to 2016. J. Integr. Agric. 2021, 20, 289–299. [Google Scholar] [CrossRef]
- Xiao, D.P.; Liu, D.L.; Wang, B.; Feng, P.Y.; Tang, J.Z. Climate change impact on yields and water use of wheat and maize in the north China plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 1–15. [Google Scholar] [CrossRef]
- Zhan, F.Y.; Li, H.; Zhang, J.H. Analysis of maize yield under climate change, adaptations in varieties and planting date in northeast China in recent thirty years. Int. J. Environ. Ecol. Eng. 2015, 9, 1106–1111. [Google Scholar]
Factors | Std | Ave | CV/% | Hv | Lv |
---|---|---|---|---|---|
Temperature/°C | 0.5 | 24.7 | 2.1 | 26.0 | 23.6 |
Precipitation/mm | 8.6 | 339.3 | 2.5 | 359.3 | 309.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Guo, Q.; Yang, F.; Chen, H.; Li, W.; Lin, L.; Zheng, C. Recent Changes in Temperature and Precipitation of the Summer and Autumn Seasons over Fujian Province, China. Water 2021, 13, 1900. https://doi.org/10.3390/w13141900
Ma Z, Guo Q, Yang F, Chen H, Li W, Lin L, Zheng C. Recent Changes in Temperature and Precipitation of the Summer and Autumn Seasons over Fujian Province, China. Water. 2021; 13(14):1900. https://doi.org/10.3390/w13141900
Chicago/Turabian StyleMa, Zhiguo, Qinyu Guo, Feiyue Yang, Huiling Chen, Wenqing Li, Lili Lin, and Chaoyuan Zheng. 2021. "Recent Changes in Temperature and Precipitation of the Summer and Autumn Seasons over Fujian Province, China" Water 13, no. 14: 1900. https://doi.org/10.3390/w13141900
APA StyleMa, Z., Guo, Q., Yang, F., Chen, H., Li, W., Lin, L., & Zheng, C. (2021). Recent Changes in Temperature and Precipitation of the Summer and Autumn Seasons over Fujian Province, China. Water, 13(14), 1900. https://doi.org/10.3390/w13141900