Comparison of In-Situ Chlorophyll-a Time Series and Sentinel-3 Ocean and Land Color Instrument Data in Slovenian National Waters (Gulf of Trieste, Adriatic Sea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and In-Situ Sampling
2.2. Methodology
2.2.1. In-Situ Chl-a Data: Analytical Methods
2.2.2. Satellite Data: Chl-a Concentration Estimates
2.2.3. Machine Learning
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. The In-Situ Time Series
3.2. The Performance of the ESA OLCI Algal Pigment Concentration Products
3.3. The Performance of the Other Available Chl-a Algorithms
3.4. Machine Learning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm | Description |
---|---|
OC3E [46,74] | Algorithm used three-band blue-green reflectance ratio of the following format: MBR = X = log10 (MBR) Chl-a [mg/m³] = 10a0 + a1 × X + a2 × X 2 + a3 × X 3 + a4 × X 4, with the coefficients: a0 = 0.2521, a1 = −2.2146, a2 = 1.5193, a3 = −0.7702 and a4 = −0.4291. |
OC4E | Algorithm used four-band blue-green reflectance ratio of the following format: MBR = Chl-a is determined in the same equation as OC3E using the following coefficients: a0 = 0.3255, a1 = −2.7677, a2 = 2.4409, a3 = −1.1288 and a4 = −0.4990. |
MedOC4 [43,50] | Algorithm is developed by using a Mediterranean bio-optical dataset to derive a set of coefficients for a new regional algorithm based on the OC4 functional form using four-band blue-green reflectance ratio of the following format: MBR = Chl-a is determined in the same equation as OC3E using the following coefficients: a0 = 0.4900, a1 = −4.023, a2 = 1.428, a3 = 2.976 and a4 = -2.795. |
ADOC4 [49] | Algorithm used four-band blue-green reflectance of the following format: MBR = ADOC4 Chl-a is determined in the same equation as OC3E using the following coefficients: a0 = 0.236, a1 = −3.331, a2 = 2.386, a3 = −4.283 and a4 = −5.816. |
AD4 [77] | Algorithm used 2 wavelengths a polynomial of the 3rd degree was fitted to the data using the following format: Rrs35 = log10 [Chl-a] = 0.091 – 2.620 Log10 [Rrs35] – 1.148 Log10 [Rrs35]² − 4.949 Log10 [Rrs35]3 |
3B-OLCI [78] | Algorithm used the following bands and formats: Chl-a [mg/m³] = 153 × () − )) + 18.728 |
2B-OLCI [78] | Algorithm used the following bands and formats: Chl-a [mg/m³] = 45.597 × ) − 26.451 |
G2B [32] | Algorithm used two-band red-NIR according to the following format: Chl-a [mg/m3] = ((35.75 × )) − 19.3)1.124 |
Algorithm Methods | n | Nearshore | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R | R2 | RMSE | p-Value | R (Log) | R2 (Log) | RMSE (Log) | p-Value (Log) | |||
NN | Original | 85 | 0.16 | 0.03 | 1.2 | 0.1 | 0.30 | 0.10 | 0.4 | 0.0 |
OC4Me | Original | 58 | 0.66 | 0.44 | 1.2 | 1.10−8 | 0.54 | 0.29 | 0.5 | 1.10−5 |
OC4E | Original | 71 | 0.61 | 0.37 | 0.9 | 1.10−8 | 0.55 | 0.31 | 0.4 | 3.10−7 |
OC4SI | SI fit | 71 | 0.62 | 0.38 | 0.4 | 6.10−8 | 0.58 | 0.33 | 0.2 | 2.10−7 |
OC3E | Original | 71 | 0.63 | 0.39 | 1.0 | 7.10−9 | 0.56 | 0.31 | 0.4 | 5.10−7 |
OC3SI | SI fit | 71 | 0.61 | 0.38 | 0.4 | 1.10−8 | 0.55 | 0.31 | 0.3 | 7.10−7 |
MedOC4 | Original | 71 | 0.61 | 0.37 | 1.7 | 1.10−8 | 0.57 | 0.32 | 0.5 | 3.10−7 |
G2B | Original | 27 | −0.24 | 0.07 | 39.3 | 0.2 | −0.23 | 0.06 | 1.6 | 0.2 |
G2B-SI | SI fit | 29 | 0.34 | 0.12 | 0.4 | 0.0 | 0.37 | 0.14 | 0.2 | 0.0 |
2B-OLCI | Original | 29 | −0.32 | 0.12 | 28.7 | 0.0 | −0.20 | 0.05 | 1.60 | 0.2 |
2B-OLCI-SI | SI fit | 29 | −0.41 | 0.18 | 0.4 | 0.0 | −0.42 | 0.19 | 0.2 | 0.0 |
3B-OLCI | Original | 27 | −0.35 | 0.14 | 125.2 | 0.0 | −0.20 | 0.05 | 2.0 | 0.4 |
3b-OLCI-SI | SI fit | 27 | 0.37 | 0.14 | 0.4 | 0.1 | 0.34 | 0.12 | 0.2 | 0.1 |
ADOC4 | Original | 71 | 0.61 | 0.38 | 0.7 | 1.10−8 | 0.47 | 0.22 | 0.5 | 5.10−5 |
AD4 | Original | 71 | 0.63 | 0.40 | 0.6 | 5.10−9 | 0.46 | 0.22 | 0.5 | 5.10−5 |
AD4SI | SI fit | 71 | 0.60 | 0.35 | 0.4 | 5.10−8 | 0.47 | 0.22 | 0.3 | 3.10−5 |
Algorithm Methods | n | Offshore | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R | R2 | RMSE | p-Value | R (Log) | R2 (Log) | RMSE (Log) | p-Value (Log) | |||
NN | Original | 112 | 0.09 | 0.01 | 1.5 | 0.3 | 0.30 | 0.10 | 0.4 | 0.0 |
OC4Me | Original | 102 | 0.43 | 0.18 | 1.0 | 8.10−6 | 0.60 | 0.36 | 0.4 | 4.10−11 |
OC4E | Original | 108 | 0.46 | 0.21 | 0.9 | 6.10−7 | 0.62 | 0.38 | 0.3 | 9.10−13 |
OC4SI | SI fit | 108 | 0.49 | 0.24 | 0.4 | 1.10−7 | 0.61 | 0.37 | 0.2 | 4.10−12 |
OC3E | Original | 107 | 0.46 | 0.21 | 1.2 | 8.10−7 | 0.63 | 0.39 | 0.3 | 8.10−13 |
OC3SI | SI fit | 107 | 0.49 | 0.24 | 0.4 | 1.10−7 | 0.62 | 0.38 | 0.2 | 1.10−12 |
MedOC4 | Original | 108 | 0.42 | 0.17 | 1.8 | 9.10−6 | 0.63 | 0.40 | 0.4 | 3.10−13 |
G2B | Original | 26 | 0.48 | 0.23 | 11.8 | 0.1 | 0.31 | 0.10 | 1.2 | 0.2 |
G2B-SI | SI fit | 25 | −0.03 | 0.01 | 0.5 | 0.8 | 0.01 | 3.10−6 | 0.2 | 1.00 |
2B-OLCI | Original | 25 | 0.05 | 0.01 | 10.3 | 0.8 | 0.30 | 0.09 | 1.1 | 0.2 |
2B-OLCI-SI | SI fit | 25 | 0.02 | 0.000 | 0.5 | 0.9 | −0.01 | 0.00 | 0.2 | 0.9 |
3B-OLCI | Original | 21 | −0.09 | 0.01 | 30.5 | 0.7 | 1.00 | 1.00 | 0.8 | NAN |
3b-OLCI-SI | SI fit | 21 | 0.09 | 0.01 | 0.6 | 0.7 | 0.03 | 0.00 | 0.2 | 0.9 |
ADOC4 | Original | 108 | 0.45 | 0.20 | 0.8 | 1.10−6 | 0.53 | 0.28 | 0.7 | 4.10−9 |
AD4 | Original | 107 | 0.48 | 0.23 | 0.8 | 2.10−7 | 0.60 | 0.36 | 0.7 | 1.10−11 |
AD4SI | SI fit | 107 | 0.56 | 0.31 | 0.4 | 7.10−10 | 0.60 | 0.36 | 0.3 | 1.10−11 |
Algorithm Methods | n | R | R2 | RMSE | p-Value | R (Log) | R2 (Log) | RMSE (Log) | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|
NN | Original | 75 | 0.03 | 0.00 | 1.6 | 0.8 | 0.15 | 0.02 | 0.4 | 0.2 |
OC4Me | Original | 56 | 0.57 | 0.32 | 0.8 | 4.10−6 | 0.54 | 0.29 | 0.4 | 2.10−5 |
OC4E | Original | 65 | 0.45 | 0.21 | 0.8 | 0.0 | 0.54 | 0.29 | 0.3 | 4.10−6 |
OC4SI | SI fit | 65 | 0.47 | 0.22 | 0.4 | 9.10−5 | 0.54 | 0.30 | 0.2 | 2.10−6 |
OC3E | Original | 64 | 0.53 | 0.28 | 0.9 | 6.10−6 | 0.56 | 0.31 | 0.3 | 1.10−6 |
OC3SI | SI fit | 64 | 0.54 | 0.29 | 0.4 | 5.10−6 | 0.56 | 0.32 | 0.2 | 1.10−6 |
MedOC4 | Original | 65 | 0.43 | 0.19 | 1.6 | 0.0 | 0.54 | 0.29 | 0.4 | 4.10−6 |
G2B | Original | 14 | −0.16 | 0.03 | 45.5 | 0.5 | −0.22 | 0.05 | 1.5 | 0.4 |
G2B-SI | SI fit | 18 | 0.04 | 0.00 | 0.4 | 0.8 | 0.13 | 0.02 | 0.2 | 0.6 |
2B-OLCI | Original | 18 | −0.04 | 0.00 | 30.3 | 0.8 | −0.20 | 0.04 | 1.4 | 0.4 |
2B-OLCI-SI | SI fit | 18 | 0.12 | 0.01 | 0.4 | 0.6 | 0.06 | 0.00 | 0.2 | 0.8 |
3B-OLCI | Original | 15 | −0.14 | 0.02 | 141.6 | 0.6 | −0.61 | 0.37 | 2.3 | 0.2 |
3b-OLCI-SI | SI fit | 15 | 0.14 | 0.02 | 0.4 | 0.6 | 0.21 | 0.04 | 0.2 | 0.4 |
ADOC4 | Original | 65 | 0.45 | 0.20 | 0.7 | 0.0 | 0.51 | 0.26 | 0.4 | 1.10−5 |
AD4 | Original | 64 | 0.55 | 0.31 | 0.6 | 1.10−6 | 0.58 | 0.33 | 0.5 | 6.10−7 |
AD4SI | SI fit | 64 | 0.56 | 0.31 | 0.4 | 1.10−6 | 0.58 | 0.34 | 0.3 | 5.10−7 |
References
- Huot, Y.; Babin, M.; Bruyant, F.; Grob, C.; Twardowski, M.S.; Claustre, H. Relationship between Photosynthetic Parameters and Different Proxies of Phytoplankton Biomass in the Subtropical Ocean. Biogeosciences 2007, 4, 853–868. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, S.; Bin Abu Bakar, N. A Study on Distribution of Chlorophyll-a in the Coastal Waters of Anzali Port, South Caspian Sea. Ocean Sci. Discuss. 2011, 8, 435–451. [Google Scholar]
- Platt, T.; Sathyendranath, S. Oceanic Primary Production: Estimation by Remote Sensing at Local and Regional Scales. Science 1988, 241, 1613–1620. [Google Scholar] [CrossRef]
- Giovanardi, F.; Francé, J.; Mozetič, P.; Precali, R. Development of Ecological Classification Criteria for the Biological Quality Element Phytoplankton for Adriatic and Tyrrhenian Coastal Waters by Means of Chlorophyll a (2000/60/EC WFD). Ecol. Indic. 2018, 93, 316–332. [Google Scholar] [CrossRef]
- Varkitzi, I.; Francé, J.; Basset, A.; Cozzoli, F.; Stanca, E.; Zervoudaki, S.; Giannakourou, A.; Assimakopoulou, G.; Venetsanopoulou, A.; Mozetič, P. Pelagic Habitats in the Mediterranean Sea: A Review of Good Environmental Status (GES) Determination for Plankton Components and Identification of Gaps and Priority Needs to Improve Coherence for the MSFD Implementation. Ecol. Indic. 2018, 95, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Cherif, E.K.; Salmoun, F.; El Yemlahi, A.; Magalhaes, J.M. Monitoring Tangier (Morocco) Coastal Waters for As, Fe and P Concentrations Using ESA Sentinels-2 and 3 Data: An Exploratory Study. Reg. Stud. Mar. Sci. 2019, 32, 100882. [Google Scholar] [CrossRef]
- Cherif, E.K.; Vodopivec, M.; Mejjad, N.; Esteves da Silva, J.C.G.; Simonovič, S.; Boulaassal, H. COVID-19 Pandemic Consequences on Coastal Water Quality Using WST Sentinel-3 Data: Case of Tangier, Morocco. Water 2020, 12, 2638. [Google Scholar] [CrossRef]
- Cherif, E.K.; Salmoun, F.; Mesas-Carrascosa, F.J. Determination of Bathing Water Quality Using Thermal Images Landsat 8 on the West Coast of Tangier: Preliminary Results. Remote Sens. 2019, 11, 972. [Google Scholar] [CrossRef] [Green Version]
- Nezlin, N.P. Patterns of seasonal and interannual variability of remotely sensed chlorophyll. In The Caspian Sea Environment; Springer: Berlin/Heidelberg, Germany, 2005; pp. 143–157. [Google Scholar]
- Mozetič, P.; Francé, J.; Kogovšek, T.; Talaber, I.; Malej, A. Plankton Trends and Community Changes in a Coastal Sea (Northern Adriatic): Bottom-up vs. Top-down Control in Relation to Environmental Drivers. Estuar. Coast. Shelf Sci. 2012, 115, 138–148. [Google Scholar] [CrossRef]
- Miller, C.B. Biological Oceanography; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Joint, I.; Groom, S.B. Estimation of Phytoplankton Production from Space: Current Status and Future Potential of Satellite Remote Sensing. J. Exp. Mar. Biol. Ecol. 2000, 250, 233–255. [Google Scholar] [CrossRef]
- Duan, W.; Takara, K.; He, B.; Luo, P.; Nover, D.; Yamashiki, Y. Spatial and Temporal Trends in Estimates of Nutrient and Suspended Sediment Loads in the Ishikari River, Japan, 1985 to 2010. Sci. Total Environ. 2013, 461, 499–508. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Sahu, N.; Yamashiki, Y. Spatiotemporal Evaluation of Water Quality Incidents in Japan between 1996 and 2007. Chemosphere 2013, 93, 946–953. [Google Scholar] [CrossRef]
- Cherif, E.K.; Salmoun, F. Contribution of Remote Sensing and Bacteriological Analysis for the Quality of Bathing Waters on the West Coast of Tangier. In Proceedings of the Conference Mediterraneenne Cotiere et Maritime, Split, Croatia, 27–28 March 2017; Volume 4, pp. 105–1010. [Google Scholar]
- Darecki, M.; Stramski, D. An Evaluation of MODIS and SeaWiFS Bio-Optical Algorithms in the Baltic Sea. Remote Sens. Environ. 2004, 89, 326–350. [Google Scholar] [CrossRef]
- Solonenko, M.G.; Mobley, C.D. Inherent Optical Properties of Jerlov Water Types. Appl. Opt. 2015, 54, 5392–5401. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Morel, A.Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review. In Ecological Studies in the Middle Reach of Chesapeake Bay: Calvert Cliffs; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Morel, A. Optical Modeling of the Upper Ocean in Relation to Its Biogenous Matter Content (Case I Waters). J. Geophys. Res. Oceans 1988, 93, 10749–10768. [Google Scholar] [CrossRef] [Green Version]
- Sathyendranath, S. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters; International Ocean-Colour Coordinating Group: Dartmouth, NS, Canada, 2000. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of Variations in Ocean Color 1. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Morel, A.; Gentili, B.; Chami, M.; Ras, J. Bio-Optical Properties of High Chlorophyll Case 1 Waters and of Yellow-Substance-Dominated Case 2 Waters. Deep Sea Res. Part Oceanogr. Res. Pap. 2006, 53, 1439–1459. [Google Scholar] [CrossRef]
- Schalles, J.F. Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentrations in coastal. In Remote sensing of Aquatic Coastal Ecosystem Processes; Springer: Berlin/Heidelberg, Germany, 2006; pp. 27–79. [Google Scholar]
- ABBAS, M.M.; Melesse, A.M.; Scinto, L.J.; Rehage, J.S. Satellite Estimation of Chlorophyll-a Using Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor in Shallow Coastal Water Bodies: Validation and Improvement. Water 2019, 11, 1621. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N. Seamless Retrievals of Chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in Inland and Coastal Waters: A Machine-Learning Approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Cui, T.; Wen, Z. A Review of Some Important Technical Problems in Respect of Satellite Remote Sensing of Chlorophyll-a Concentration in Coastal Waters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2275–2289. [Google Scholar] [CrossRef]
- Gohin, F.; Druon, J.N.; Lampert, L. A Five Channel Chlorophyll Concentration Algorithm Applied to SeaWiFS Data Processed by SeaDAS in Coastal Waters. Int. J. Remote Sens. 2002, 23, 1639–1661. [Google Scholar] [CrossRef]
- Van Der Woerd, H.J.; Pasterkamp, R. HYDROPT: A Fast and Flexible Method to Retrieve Chlorophyll-a from Multispectral Satellite Observations of Optically Complex Coastal Waters. Remote Sens. Environ. 2008, 112, 1795–1807. [Google Scholar] [CrossRef]
- Zheng, G.; DiGiacomo, P.M. Remote Sensing of Chlorophyll-a in Coastal Waters Based on the Light Absorption Coefficient of Phytoplankton. Remote Sens. Environ. 2017, 201, 331–341. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Estimation of Chlorophyll-a Concentration in Case II Waters Using MODIS and MERIS Data—Successes and Challenges. Environ. Res. Lett. 2009, 4, 045005. [Google Scholar] [CrossRef] [Green Version]
- Gilerson, A.A.; Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A. Algorithms for Remote Estimation of Chlorophyll-a in Coastal and Inland Waters Using Red and near Infrared Bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, J.E.; Maritorena, S.; Siegel, D.A.; O’Brien, M.C.; Toole, D.; Mitchell, B.G.; Kahru, M.; Chavez, F.P.; Strutton, P.; Cota, G.F. Ocean Color Chlorophyll a Algorithms for SeaWiFS, OC2, and OC4: Version 4. SeaWiFS Postlaunch Calibration Valid. Anal. Part 2000, 3, 9–23. [Google Scholar]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll Aalgorithms for Oligotrophic Oceans: A Novel Approach Based on Three-Band Reflectance Difference. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Carder, K.L.; Cannizzaro, J.P.; Lee, Z. Ocean Color Algorithms in Optically Shallow Waters: Limitations and Improvements. In Remote Sensing of the Coastal Oceanic Environment; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5885, p. 588506. [Google Scholar]
- Le, C.; Hu, C.; Cannizzaro, J.; Duan, H. Long-Term Distribution Patterns of Remotely Sensed Water Quality Parameters in Chesapeake Bay. Estuar. Coast. Shelf Sci. 2013, 128, 93–103. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; English, D.; Cannizzaro, J.; Chen, Z.; Feng, L.; Boler, R.; Kovach, C. Towards a Long-Term Chlorophyll-a Data Record in a Turbid Estuary Using MODIS Observations. Prog. Oceanogr. 2013, 109, 90–103. [Google Scholar] [CrossRef]
- Moses, W.J.; Saprygin, V.; Gerasyuk, V.; Povazhnyy, V.; Berdnikov, S.; Gitelson, A.A. OLCI-Based NIR-Red Models for Estimating Chlorophyll-a Concentration in Productive Coastal Waters—a Preliminary Evaluation. Environ. Res. Commun. 2019, 1, 011002. [Google Scholar] [CrossRef]
- Morel, A.; Huot, Y.; Gentili, B.; Werdell, P.J.; Hooker, S.B.; Franz, B.A. Examining the Consistency of Products Derived from Various Ocean Color Sensors in Open Ocean (Case 1) Waters in the Perspective of a Multi-Sensor Approach. Remote Sens. Environ. 2007, 111, 69–88. [Google Scholar] [CrossRef]
- Doerffer, R.; Schiller, H. The MERIS Case 2 Water Algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; Cannizzaro, J.; English, D.; Muller-Karger, F.; Lee, Z. Evaluation of Chlorophyll-a Remote Sensing Algorithms for an Optically Complex Estuary. Remote Sens. Environ. 2013, 129, 75–89. [Google Scholar] [CrossRef]
- Tzortziou, M.; Subramaniam, A.; Herman, J.R.; Gallegos, C.L.; Neale, P.J.; Harding, L.W., Jr. Remote Sensing Reflectance and Inherent Optical Properties in the Mid Chesapeake Bay. Estuar. Coast. Shelf Sci. 2007, 72, 16–32. [Google Scholar] [CrossRef]
- Volpe, G.; Santoleri, R.; Vellucci, V.; D’Alcalà, M.R.; Marullo, S.; D’Ortenzio, F. The Colour of the Mediterranean Sea: Global versus Regional Bio-Optical Algorithms Evaluation and Implication for Satellite Chlorophyll Estimates. Remote Sens. Environ. 2007, 107, 625–638. [Google Scholar] [CrossRef]
- D’Ortenzio, F.; Marullo, S.; Ragni, M.; D’Alcalà, M.R.; Santoleri, R. Validation of Empirical SeaWiFS Algorithms for Chlorophyll-a Retrieval in the Mediterranean Sea: A Case Study for Oligotrophic Seas. Remote Sens. Environ. 2002, 82, 79–94. [Google Scholar] [CrossRef]
- Di Cicco, A.; Sammartino, M.; Marullo, S.; Santoleri, R. Regional Empirical Algorithms for an Improved Identification of Phytoplankton Functional Types and Size Classes in the Mediterranean Sea Using Satellite Data. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.E.; Lain, L.R.; Bernard, S. An Optimized Chlorophyll a Switching Algorithm for MERIS and OLCI in Phytoplankton-Dominated Waters. Remote Sens. Environ. 2018, 215, 217–227. [Google Scholar] [CrossRef]
- Su, H.; Lu, X.; Chen, Z.; Zhang, H.; Lu, W.; Wu, W. Estimating Coastal Chlorophyll-A Concentration from Time-Series OLCI Data Based on Machine Learning. Remote Sens. 2021, 13, 576. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V.; Clerici, M.; D’Alimonte, D.; Zibordi, G.; Berthon, J.-F.; Canuti, E. Multi-Sensor Satellite Time Series of Optical Properties and Chlorophyll-a Concentration in the Adriatic Sea. Prog. Oceanogr. 2011, 91, 229–244. [Google Scholar] [CrossRef]
- D’Alimonte, D.; Zibordi, G. Phytoplankton Determination in an Optically Complex Coastal Region Using a Multilayer Perceptron Neural Network. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2861–2868. [Google Scholar] [CrossRef]
- Volpe, G.; Colella, S.; Brando, V.E.; Forneris, V.; Padula, F.L.; Cicco, A.D.; Sammartino, M.; Bracaglia, M.; Artuso, F.; Santoleri, R. Mediterranean Ocean Colour Level 3 Operational Multi-Sensor Processing. Ocean Sci. 2019, 15, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Zibordi, G.; Mélin, F.; Berthon, J.-F. A Time-Series of above-Water Radiometric Measurements for Coastal Water Monitoring and Remote Sensing Product Validation. IEEE Geosci. Remote Sens. Lett. 2006, 3, 120–124. [Google Scholar] [CrossRef]
- Mauri, E.; Poulain, P.-M.; Južnič-Zonta, Ž. MODIS Chlorophyll Variability in the Northern Adriatic Sea and Relationship with Forcing Parameters. J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef]
- Mozetič, P.; Solidoro, C.; Cossarini, G.; Socal, G.; Precali, R.; Francé, J.; Bianchi, F.; De Vittor, C.; Smodlaka, N.; Umani, S.F. Recent Trends towards Oligotrophication of the Northern Adriatic: Evidence from Chlorophyll a Time Series. Estuaries Coasts 2010, 33, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Malačič, V. Wind Direction Measurements on Moored Coastal Buoys. J. Atmos. Ocean. Technol. 2019, 36, 1401–1418. [Google Scholar] [CrossRef]
- Jeromel, M.; Vlado Malačič, V.; Rakovec, J. Weibull Distribution of Bora and Sirocco Winds in the Northern Adriatic Sea. Geofizika 2009, 26, 85–100. [Google Scholar]
- Malačič, V.; Petelin, B. Climatic Circulation in the Gulf of Trieste (Northern Adriatic). J. Geophys. Res. Oceans 2009, 114, 114. [Google Scholar] [CrossRef]
- Brush, M.J.; Mozetič, P.; Francé, J.; Aubry, F.B.; Djakovac, T.; Faganeli, J.; Harris, L.A.; Niesen, M. Phytoplankton Dynamics in a Changing Environment. In Coastal Ecosystems in Transition; American Geophysical Union (AGU): Washington, DC, USA, 2020; pp. 49–74. ISBN 978-1-119-54362-6. [Google Scholar]
- Cabrini, M.; Fornasaro, D.; Cossarini, G.; Lipizer, M.; Virgilio, D. Phytoplankton Temporal Changes in a Coastal Northern Adriatic Site during the Last 25 Years. Estuar. Coast. Shelf Sci. 2012, 115, 113–124. [Google Scholar] [CrossRef]
- Marić, D.; Kraus, R.; Godrijan, J.; Supić, N.; Djakovac, T.; Precali, R. Phytoplankton Response to Climatic and Anthropogenic Influences in the North-Eastern Adriatic during the Last Four Decades. Estuar. Coast. Shelf Sci. 2012, 115, 98–112. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 157–175. [Google Scholar]
- Genuer, R.; Poggi, J.-M. Introduction to Random Forests with R. In Random Forests with R; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–8. [Google Scholar]
- Holm-Hansen, O.; Lorenzen, C.J.; Holmes, R.W.; Strickland, J.D.H. Fluorometric Determination of Chlorophyll. ICES J. Mar. Sci. 1965, 30, 3–15. [Google Scholar] [CrossRef]
- Mantoura, R.F.C.; Llewellyn, C.A. The Rapid Determination of Algal Chlorophyll and Carotenoid Pigments and Their Breakdown Products in Natural Waters by Reverse-Phase High-Performance Liquid Chromatography. Anal. Chim. Acta 1983, 151, 297–314. [Google Scholar] [CrossRef]
- Barlow, R.G.; Mantoura, R.F.C.; Gough, M.A.; Fileman, T.W. Pigment Signatures of the Phytoplankton Composition in the Northeastern Atlantic during the 1990 Spring Bloom. Deep Sea Res. Part II Top. Stud. Oceanogr. 1993, 40, 459–477. [Google Scholar] [CrossRef]
- Harvey, T.; Krause-Jensen, D.; Stæhr, P.A.; Groom, G.B.; Hansen, L.B. Literature Review of Remote Sensing Technologies for Coastal Chlorophyll-a Observations and Vegetation Coverage: Part of ReSTEK-Brug Af Remote Sensing Teknologier Til Opgørelse Af Klorofyl-Koncentrationer Og Vegetationsudbredelse i Danske Kystvande; No. 112; DCE-Danish Centre for Environment and Energy: Aarhus, Denmark, 2018. [Google Scholar]
- Mélin, F.; Vantrepotte, V. How Optically Diverse Is the Coastal Ocean? Remote Sens. Environ. 2015, 160, 235–251. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean Color Chlorophyll Algorithms for SeaWiFS. J. Geophys. Res. Oceans 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Hieronymi, M.; Müller, D.; Doerffer, R. The OLCI Neural Network Swarm (ONNS): A Bio-Geo-Optical Algorithm for Open Ocean and Coastal Waters. Front. Mar. Sci. 2017, 4, 140. [Google Scholar] [CrossRef] [Green Version]
- Giannini, F.; Hunt, B.P.V.; Jacoby, D.; Costa, M. Performance of OLCI Sentinel-3A Satellite in the Northeast Pacific Coastal Waters. Remote Sens. Environ. 2021, 256, 112317. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Berthon, J.-F. A Regional Assessment of OLCI Data Products. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1490–1494. [Google Scholar] [CrossRef]
- Mograne, M.A.; Jamet, C.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Cauvin, A. Evaluation of Five Atmospheric Correction Algorithms over French Optically-Complex Waters for the Sentinel-3A OLCI Ocean Color Sensor. Remote Sens. 2019, 11, 668. [Google Scholar] [CrossRef] [Green Version]
- Gossn, J.I.; Ruddick, K.G.; Dogliotti, A.I. Atmospheric Correction of OLCI Imagery over Extremely Turbid Waters Based on the Red, NIR and 1016 Nm Bands and a New Baseline Residual Technique. Remote Sens. 2019, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Xue, K.; Ma, R.; Shen, M.; Li, Y.; Duan, H.; Cao, Z.; Wang, D.; Xiong, J. Variations of Suspended Particulate Concentration and Composition in Chinese Lakes Observed from Sentinel-3A OLCI Images. Sci. Total Environ. 2020, 721, 137774. [Google Scholar] [CrossRef] [PubMed]
- Gene, C.F. Nasa-Oceancolor WEB. Available online: https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/ (accessed on 24 June 2021).
- Werdell, P.J.; Bailey, S.W. An Improved In-Situ Bio-Optical Data Set for Ocean Color Algorithm Development and Satellite Data Product Validation. Remote Sens. Environ. 2005, 98, 122–140. [Google Scholar] [CrossRef]
- Colella, S.; Brando, V.E.; Di Cicco, A.; D’Alimonte, D.; Forneris, V.; Bracaglia, M. Ocean Colour Mediterranean and Black Sea Observation Product; Copernicus: Göttingen, Germany, 2021. [Google Scholar]
- Berthon, J.-F.; Zibordi, G. Bio-Optical Relationships for the Northern Adriatic Sea. Int. J. Remote Sens. 2004, 25, 1527–1532. [Google Scholar] [CrossRef]
- Garver, S.A.; Siegel, D.A. Inherent Optical Property Inversion of Ocean Color Spectra and Its Biogeochemical Interpretation: 1. Time Series from the Sargasso Sea. J. Geophys. Res. Oceans 1997, 102, 18607–18625. [Google Scholar] [CrossRef]
- Blix, K.; Li, J.; Massicotte, P.; Matsuoka, A. Developing a New Machine-Learning Algorithm for Estimating Chlorophyll-a Concentration in Optically Complex Waters: A Case Study for High Northern Latitude Waters by Using Sentinel 3 OLCI. Remote Sens. 2019, 11, 2076. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Smith, B.; Binding, C.; Gurlin, D.; Li, L.; Bresciani, M.; Giardino, C. Hyperspectral Retrievals of Phytoplankton Absorption and Chlorophyll-a in Inland and Nearshore Coastal Waters. Remote Sens. Environ. 2021, 253, 112200. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Malone, T.C.; Malej, A.; Faganeli, J. Coastal Ecosystems in Transition: A Comparative Analysis of the Northern Adriatic and Chesapeake Bay; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 978-1-119-54356-5. [Google Scholar]
- Blondeau-Patissier, D.; Gower, J.F.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A Review of Ocean Color Remote Sensing Methods and Statistical Techniques for the Detection, Mapping and Analysis of Phytoplankton Blooms in Coastal and Open Oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Feldman, G.; McClain, C. Ocean Color Web. Available online: Https://Oceancolor.Gsfc.Nasa.Gov/Atbd/Chlor_a/ (accessed on 15 May 2021).
- Liu, G.; Li, L.; Song, K.; Li, Y.; Lyu, H.; Wen, Z.; Fang, C.; Bi, S.; Sun, X.; Wang, Z.; et al. An OLCI-Based Algorithm for Semi-Empirically Partitioning Absorption Coefficient and Estimating Chlorophyll a Concentration in Various Turbid Case-2 Waters. Remote Sens. Environ. 2020, 239, 111648. [Google Scholar] [CrossRef]
- Bignami, F.; Sciarra, R.; Carniel, S.; Santoleri, R. Variability of Adriatic Sea Coastal Turbid Waters from SeaWiFS Imagery. J. Geophys. Res. Oceans 2007, 112, 112. [Google Scholar] [CrossRef]
- Borut, U.; Vlado, M. PAR Measurements in the Gulf of Trieste (Northern Adriatic Sea). Earth Space Sci. Open Arch. 2018. [Google Scholar] [CrossRef]
- Totti, C.; Romagnoli, T.; Accoroni, S.; Coluccelli, A.; Pellegrini, M.; Campanelli, A.; Grilli, F.; Marini, M. Phytoplankton Communities in the Northwestern Adriatic Sea: Interdecadal Variability over a 30-Years Period (1988–2016) and Relationships with Meteoclimatic Drivers. J. Mar. Syst. 2019, 193, 137–153. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre. Pelagic Habitats under the MSFD D1: Scientific Advice of Policy Relevance: Recommendations to Frame Problems and Solutions for the Pelagic Habitats’ Assessment; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
Algorithm Methods | n | R | R2 | RMSE | p-Value | R (Log) | R2 (Log) | RMSE (Log) | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|
NN [40] | Original | 197 | 0.11 | 0.01 | 1.4 | 0.1 | 0.31 | 0.10 | 0.43 | 1.10−05 |
OC4Me [39,67] | Original | 160 | 0.52 | 0.27 | 1.1 | 3.10−12 | 0.58 | 0.33 | 0.46 | 2.10−15 |
OC4E [75,85] | Original | 179 | 0.52 | 0.27 | 0.9 | 2.10−13 | 0.59 | 0.35 | 0.42 | 8.10−18 |
OC4SI | SI fit | 179 | 0.52 | 0.27 | 0.4 | 1.10−13 | 0.59 | 0.34 | 0.28 | 1.10−17 |
OC3M [67] | Original | 178 | 0.51 | 0.26 | 1.1 | 5.10−13 | 0.59 | 0.34 | 0.42 | 1.10−17 |
OC3SI | SI fit | 178 | 0.52 | 0.27 | 0.4 | 1.10−13 | 0.58 | 0.34 | 0.27 | 2.10−17 |
MedOC4 [43] | Original | 179 | 0.49 | 0.24 | 1.8 | 8.10−12 | 0.59 | 0.35 | 0.45 | 4.10−18 |
G2B [32] | Original | 43 | −0.12 | 0.02 | 32.0 | 0.4 | −0.10 | 0.01 | 1.54 | 0.5 |
G2B-SI | SI fit | 54 | 0.20 | 0.04 | 0.5 | 0.1 | 0.27 | 0.07 | 0.28 | 0.1 |
2B-OLCI [38,78] | Original | 54 | −0.18 | 0.04 | 22.2 | 0.1 | −0.01 | 0.01 | 1.44 | 0.8 |
2B-OLCI-SI | SI fit | 54 | −0.10 | - | 0.5 | 0.4 | −0.13 | 0.01 | 0.28 | 0.2 |
3B-OLCI [38,78] | Original | 48 | −0.23 | 0.07 | 96.1 | 0.1 | −0.20 | 0.05 | 1.97 | 0.4 |
3b-OLCI-SI | SI fit | 48 | 0.25 | 0.07 | 0.5 | 0.1 | 0.27 | 0.08 | 0.28 | 0.1 |
ADOC4 [49] | Original | 179 | 0.51 | 0.26 | 0.8 | 9.10−13 | 0.50 | 0.25 | 0.66 | 1.10−12 |
AD4 [77] | Original | 178 | 0.53 | 0.28 | 0.7 | 5.10−14 | 0.54 | 0.29 | 0.68 | 1.10−14 |
AD4SI | SI fit | 178 | 0.56 | 0.32 | 0.4 | 6.10−16 | 0.54 | 0.30 | 0.35 | 7.10−15 |
Algorithm | a0 | a1 | a2 | a3 | a4 |
---|---|---|---|---|---|
OC3SI | −0.10793 | −1.2335 | 1.8051 | −4.5426 | 3.7072 |
OC4SI | −0.06558 | −1.421 | 2.1237 | −8.1049 | 11.0081 |
AD4SI | −0.17626 | −1.3869 | −0.17626 | −2.6716 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherif, E.K.; Mozetič, P.; Francé, J.; Flander-Putrle, V.; Faganeli-Pucer, J.; Vodopivec, M. Comparison of In-Situ Chlorophyll-a Time Series and Sentinel-3 Ocean and Land Color Instrument Data in Slovenian National Waters (Gulf of Trieste, Adriatic Sea). Water 2021, 13, 1903. https://doi.org/10.3390/w13141903
Cherif EK, Mozetič P, Francé J, Flander-Putrle V, Faganeli-Pucer J, Vodopivec M. Comparison of In-Situ Chlorophyll-a Time Series and Sentinel-3 Ocean and Land Color Instrument Data in Slovenian National Waters (Gulf of Trieste, Adriatic Sea). Water. 2021; 13(14):1903. https://doi.org/10.3390/w13141903
Chicago/Turabian StyleCherif, El Khalil, Patricija Mozetič, Janja Francé, Vesna Flander-Putrle, Jana Faganeli-Pucer, and Martin Vodopivec. 2021. "Comparison of In-Situ Chlorophyll-a Time Series and Sentinel-3 Ocean and Land Color Instrument Data in Slovenian National Waters (Gulf of Trieste, Adriatic Sea)" Water 13, no. 14: 1903. https://doi.org/10.3390/w13141903
APA StyleCherif, E. K., Mozetič, P., Francé, J., Flander-Putrle, V., Faganeli-Pucer, J., & Vodopivec, M. (2021). Comparison of In-Situ Chlorophyll-a Time Series and Sentinel-3 Ocean and Land Color Instrument Data in Slovenian National Waters (Gulf of Trieste, Adriatic Sea). Water, 13(14), 1903. https://doi.org/10.3390/w13141903