Appraisal of Super-Fast Membrane Bioreactors by MASM—A New Activated Sludge Model for Membrane Filtration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Approach
2.1.1. COD Fractionation
2.1.2. Particle Size Distribution
2.2. Model Structure
2.2.1. Effective Filtration Size
2.2.2. Modified COD Fractionation and Mass Balance
2.2.3. Model Description
2.3. Model Components and Process Kinetics
3. Modeling Results and Discussion
3.1. Basis for Evaluation
3.2. The Fate of Soluble Hydrolyzable COD
3.2.1. AS Configurations with Different HRT Levels
3.2.2. AS Configurations Adjusted to the Same HRT Levels
3.2.3. The Impact of HRT on SH Removal
3.3. Effluent Quality
3.4. Evaluation of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Orhon, D.; Sözen, S. Reshaping the activated sludge process: Has the time come or passed? J. Chem. Technol. Biotechnol. 2020, 95, 1632–1639. [Google Scholar] [CrossRef]
- Orhon, D. Evolution of the activated sludge process: The first 50 years. J. Chem. Technol. Biotechnol. 2015, 90, 608–640. [Google Scholar] [CrossRef]
- Barwal, A.; Chaudhary, R. To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: A review. Rev. Environ. Sci. Biotechnol. 2014, 13, 285–299. [Google Scholar] [CrossRef]
- Tian, J.Y.; Liang, H.; Li, X.; You, S.J.; Tian, S.; Li, G.B. Membrane coagulation bioreactor (MCBR) for drinking water treatment. Water Res. 2008, 42, 3910–3920. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.Y.; Liang, H.; Yang, Y.L.; Tian, S.; Li, G.B. Membrane adsorption bioreactor (MABR) for treating slightly polluted surface water supplies: As compared to membrane bioreactor (MBR). J. Membr. Sci. 2008, 325, 262–270. [Google Scholar] [CrossRef]
- Chae, S.R.; Shin, H.S. Characteristics of simultaneous organic and nutrient removal in a pilot-scale vertical submerged membrane bioreactor (VSMBR) treating municipal wastewater at various temperatures. Process Biochem. 2007, 42, 193–198. [Google Scholar] [CrossRef]
- Wu, G.; Guan, Y.; Zhan, X. Effect of salinity on the activity, settling and microbial community of activated sludge in sequencing batch reactors treating synthetic saline wastewater. Water Sci. Technol. 2008, 58, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y. A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination 2013, 314, 169–188. [Google Scholar] [CrossRef]
- Crawford, G.; Thompson, D.; Lozier, J.; Daigger, G.; Fleischer, E. Membrane bioreactors-a designer’s perspective. Proc. Water Environ. Fed. 2000, 2000, 311–319. [Google Scholar] [CrossRef]
- Sarioglu, M.; Insel, G.; Artan, N.; Orhon, D. Model evaluation of simultaneous nitrification and denitrification in a membrane bioreactor operated without an anoxic reactor. J. Membr. Sci. 2009, 337, 17–27. [Google Scholar] [CrossRef]
- Insel, G.; Hocaoğlu, S.M.; Cokgor, E.U.; Orhon, D. Modelling the effect of biomass induced oxygen transfer limitations on the nitrogen removal performance of membrane bioreactor. J. Membr. Sci. 2011, 368, 54–63. [Google Scholar] [CrossRef]
- Sawyer, H.A. Design of concrete frames for two failure stages. Spec. Public 1965, 12, 405–437. [Google Scholar] [CrossRef]
- Ng, H.Y.; Hermanowicz, S.W. Membrane bioreactor operation at short solids retention times: Performance and biomass characteristics. Water Res. 2005, 39, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Moreno-Andrade, I.; Huang, C.L.; Xia, S.; Hermanowicz, S.W. Effects of short solids retention time on microbial community in a membrane bioreactor. Bioresour. Technol. 2009, 100, 3489–3496. [Google Scholar] [CrossRef] [PubMed]
- Başaran, S.T.; Aysel, M.; Kurt, H.; Ergal, I.; Kumru, M.; Akarsubaşı, A.; Sözen, S.; Orhon, D. Removal of readily biodegradable substrate in super fast membrane bioreactor. J. Membr. Sci. 2012, 423, 477–486. [Google Scholar] [CrossRef]
- Başaran, S.T.; Aysel, M.; Kurt, H.; Ergal, I.; Akarsubaşı, A.; Yağcı, N.; Doğruel, S.; Çokgör, E.U.; Keskinler, B.; Sözen, S.; et al. Kinetic characterization of acetate utilization and response of microbial population in super fast membrane bioreactor. J. Membr. Sci. 2014, 455, 392–404. [Google Scholar] [CrossRef]
- Sözen, S.; Teksoy-Başaran, S.; Ergal, İ.; Karaca, C.; Allı, B.; Razbonyalı, C.; Ubay-Çokgör, E.; Orhon, D. A novel process maximizing energy conservation potential of biological treatment: Super fast membrane bioreactor. J. Membr. Sci. 2018, 545, 337–347. [Google Scholar] [CrossRef]
- Ekama, G.A.; Dold, P.L.; Marais, G.V.R. Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems. Water Sci. Technol. 1986, 18, 91–114. [Google Scholar] [CrossRef]
- Henze, M.; Gujer, W.; Mino, T.; van Loosdrecht, M.C. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; IWA Publishing: London, UK, 2000. [Google Scholar] [CrossRef]
- Karahan, Ö.; van Loosdrecht, M.C.M.; Orhon, D. Modification of activated sludge model no. 3 considering direct growth on primary substrate. Water Sci. Technol. 2003, 47, 219–225. [Google Scholar] [CrossRef]
- Munz, G.; Gori, R.; Cammilli, L.; Lubello, C. Characterization of tannery wastewater and biomass in a membrane bioreactor using respirometric analysis. Bioresour. Technol. 2008, 99, 8612–8618. [Google Scholar] [CrossRef]
- Arias-Navarro, M.; Villen-Guzman, M.; Perez-Recuerda, R.; Rodriguez-Maroto, J.M. The use of respirometry as a tool for the diagnosis of waste water treatment plants. A real case study in Southern Spain. J. Water Process. Eng. 2019, 29, 100791. [Google Scholar] [CrossRef]
- Germirli, F.; Orhon, D.; Artan, N. Assessment of the initial inert soluble COD in industrial wastewaters. Water Sci. Technol. 1991, 23, 1077–1086. [Google Scholar] [CrossRef]
- Orhon, D.; Karahan, Ö.; Sözen, S. The effect of residual microbial products on the experimental assessment of the particulate inert COD in wastewaters. Water Res. 1999, 33, 3191–3203. [Google Scholar] [CrossRef]
- Henze, M. Characterization of wastewater for modelling of activated sludge processes. Water Sci. Technol. 1992, 25, 1–15. [Google Scholar] [CrossRef]
- Orhon, D.; Çokgör, E.U.; Sözen, S. Experimental basis for the hydrolysis of slowly biodegradable substrate in different wastewaters. Water Sci. Technol. 1999, 39, 87–95. [Google Scholar] [CrossRef]
- Sophonsiri, C.; Morgenroth, E. Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters. Chemosphere 2004, 55, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Dulekgurgen, E.; Doğruel, S.; Karahan, Ö.; Orhon, D. Size distribution of wastewater COD fractions as an index for biodegradability. Water Res. 2006, 40, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Doǧruel, S.; Köktuna, M.; Çokgör, E.U.; Sözen, S.; Orhon, D. Particle size distribution based evaluation of biodegradation and treatability for leachate from organic waste. J. Chem. Technol. Biotechnol. 2001, 86, 1364–1373. [Google Scholar] [CrossRef]
- Doğruel, S.; Çokgör, E.U.; Ince, O.; Sözen, S.; Orhon, D. Potential of ultrafiltration for organic matter removal in the polymer industry effluent based on particle size distribution analysis. Environ. Sci. Pollut. Res. 2013, 20, 340–350. [Google Scholar] [CrossRef]
- Hocaoglu, S.M.; Atasoy, E.; Baban, A.; Orhon, D. Modeling biodegradation characteristics of grey water in membrane bioreactor. J. Membr. Sci. 2013, 429, 139–146. [Google Scholar] [CrossRef]
- Karahan, Ö.; Dogruel, S.; Dulekgurgen, E.; Orhon, D. COD fractionation of tannery wastewaters—Particle size distribution, biodegradability and modeling. Water Res. 2008, 42, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Hocaoglu, S.M.; Orhon, D. Fate of soluble residual organics in membrane bioreactor. J. Membr. Sci. 2010, 364, 65–74. [Google Scholar] [CrossRef]
- Doğruel, S. Biodegradation characteristics of high strength municipal wastewater supported by particle size distribution. Desalin. Water Treat. 2012, 45, 11–20. [Google Scholar] [CrossRef]
- Shin, H.S.; Kang, S.T. Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times. Water Res. 2003, 37, 121–127. [Google Scholar] [CrossRef]
- Orhon, D.; Artan, N.; Cimşit, Y. The concept of soluble residual product formation in the modelling of activated sludge. Water Sci. Technol. 1989, 21, 339–350. [Google Scholar] [CrossRef]
- Duncan, J.B.; Stuckey, D.C. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res. 1999, 33, 3063–3082. [Google Scholar] [CrossRef]
- Güell, C.; Czekaj, P.; Davis, R.H. Microfiltration of protein mixtures and the effects of yeast on membrane fouling. J. Membr. Sci. 1999, 155, 113–122. [Google Scholar] [CrossRef]
- Bowen, W.R.; Yousef, H.N.; Calvo, J.I. Dynamic crossflow ultrafiltration of colloids: A deposition probability cake filtration approach. Sep. Purif. Technol. 2001, 24, 297–308. [Google Scholar] [CrossRef]
- Orhon, D.; Artan, N. Modelling of Activated Sludge Systems, Lancaster; Technomic Publishing Co.: Lancaster, PA, USA, 1994. [Google Scholar] [CrossRef]
- Wu, J.; Yan, G.; Zhou, G.; Xu, T. Wastewater COD biodegradability fractionated by simple physical–chemical analysis. Chem. Eng. Technol. 2014, 258, 450–459. [Google Scholar] [CrossRef]
- Lubello, C.; Caffaz, S.; Gori, R.; Munz, G. A modified activated sludge model to estimate solids production at low and high solids retention time. Water Res. 2009, 43, 4539–4548. [Google Scholar] [CrossRef]
- Noyan, K.; Allı, B.; Okutman Taş, D.; Sözen, S.; Orhon, D. Relationship between COD particle size distribution, COD fractionation and biodegradation characteristics in domestic sewage. J. Chem. Technol. Biotechnol. 2017, 92, 2142–2149. [Google Scholar] [CrossRef]
- Garrett, M.T.; Sawyer, C.N. Kinetics of removal of soluble BOD by activated sludge. Purdue Univ. Eng. Bull. 1952, 36, 51–77. [Google Scholar]
- Kappeler, J.; Gujer, W. Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling. Water Sci. Technol. 1992, 25, 125–139. [Google Scholar] [CrossRef]
- Orhon, D.; Soybay, S.; Tünay, O.; Artan, N. The effect of reactor hydraulics on the performance of activated sludge systems—I. The traditional modelling approach. Water Res. 1989, 23, 1511–1518. [Google Scholar] [CrossRef]
- Sumo®® Wastewater Process Simulator, Dynamita Process Modeling, Nyons, France, 2018. Available online: http://www.dynamita.com/the-sumo/ (accessed on 14 July 2021).
- Katipoglu-Yazan, T.; Ubay-Cokgor, E.; Orhon, D. Chronic impact of sulfamethoxazole: How does process kinetics relate to metabolic activity and composition of enriched nitrifying microbial culture? J. Chem. Technol. Biotechnol. 2018, 93, 1722–1732. [Google Scholar] [CrossRef]
- Görgün, E.; Insel, G.; Artan, N.; Orhon, D. Model evaluation of temperature dependency for carbon and nitrogen removal in a full-scale activated sludge plant treating leather-tanning wastewater. J. Environ. Sci. Health A 2007, 42, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Insel, H.G.; Görgün, E.; Artan, N.; Orhon, D. Model based optimization of nitrogen removal in a full scale activated sludge plant. Environ. Eng. Sci. 2009, 26, 471–480. [Google Scholar] [CrossRef]
- Tas, D.O.; Karahan, Ö.; Insel, G.; Övez, S.; Orhon, D.; Spanjers, H. Biodegradability and denitrification potential of settleable chemical oxygen demand in domestic wastewater. Water Environ. Res. 2009, 81, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Orhon, D.; Okutman, D.; Insel, G. Characterisation and biodegradation of settleable organic matter for domestic wastewater. Water S.A. 2002, 28, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Okutman, D.; Övez, S.; Orhon, D. Hydrolysis of settleable substrate in domestic sewage. Biotechnol. Lett. 2001, 23, 1907–1914. [Google Scholar] [CrossRef]
- Murat Hocaoglu, S.; Insel, G.; Ubay Cokgor, E.; Baban, A.; Orhon, D. COD fractionation and biodegradation kinetics of segregated domestic wastewater: Black and grey water fractions. J. Chem. Technol. Biotechnol. 2010, 85, 1241–1249. [Google Scholar] [CrossRef]
- Orhon, D.; Çokgör, E.U.; Sözen, S. Dual hydrolysis model of the slowly biodegradable substrate in activated sludge systems. Biotechnol. Tech. 1998, 12, 737–741. [Google Scholar] [CrossRef]
- Babuna, F.G.; Orhon, D.; Çokgör, E.U.; Insel, G.; Yaprakli, B. Modelling of activated sludge for textile wastewaters. Water Sci. Technol. 1998, 38, 9–17. [Google Scholar] [CrossRef]
- Yildiz, G.; Insel, G.; Cokgor, E.U.; Orhon, D. Biodegradation kinetics of the soluble slowly biodegradable substrate in polyamide carpet finishing wastewater. J. Chem. Technol. Biotechnol. 2008, 83, 34–40. [Google Scholar] [CrossRef]
- Doğruel, S.; Orhon, D. Particle size distribution of chemical oxygen demand in industrial effluents: Impact on effective filtration size and modelling of membrane bioreactors. J. Chem. Technol. Biotechnol. 2021. [Google Scholar] [CrossRef]
- Orhon, D.; Uslu, O.; Meriç, S.; Salihoglu, I.; Filibeli, A. Wastewater management for Istanbul: Basis for treatment and disposal. Environ. Pollut. 1994, 84, 167–178. [Google Scholar] [CrossRef]
- Orhon, D.; Allı, B.; Sözen, S. Which activated sludge configurations qualify for maximizing energy conservation—Why? J. Chem. Technol. Biotechnol. 2019, 94, 556–568. [Google Scholar] [CrossRef]
- Karahan, Ö.; van Loosdrecht, M.C.; Orhon, D. Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth. Biotechnol. Bioeng. 2006, 94, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.; Miller, M.; Bott, C.; Murthy, S.; de Clippeleir, H.; Wett, B. High-rate activated sludge system for carbon management–Evaluation of crucial process mechanisms and design parameters. Water Res. 2015, 87, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Meerburg, F.A.; Boon, N.; van Winckel, T.; Vercamer, J.A.; Nopens, I.; Vlaeminck, S.E. Toward energy-neutral wastewater treatment: A high-rate contact stabilization process to maximally recover sewage organics. Bioresour. Technol. 2015, 179, 373–381. [Google Scholar] [CrossRef]
- Meerburg, F.A.; Boon, N.; van Winckel, T.; Pauwels, K.T.; Vlaeminck, S.E. Live fast, die young: Optimizing retention times in high-rate contact stabilization for maximal recovery of organics from wastewater. Environ. Sci. Technol. 2016, 50, 9781–9790. [Google Scholar] [CrossRef] [PubMed]
- Orhon, D.; Sözen, S.; Allı, B. Comment on “Bioflocculation management through high-rate contact stabilization: A promising technology to recover organic carbon from low-strength wastewater by Rahman, A., Meerburg, FA, Ravadagundhi, S., Wett, B., Jimenez, J., Bott, C., Al-Omari, A., Riffat, R., Murthy, S. and De Clippeleir, H. [Water Res. 2016, 104, 485–496]”. Water Res. 2017, 126, 524–526. [Google Scholar] [CrossRef] [PubMed]
Model Components Process | SI | SIC | XI | SS | SH | XS | SO | XP | SP | XSS | SHC | XH | Process Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growth of XH | 1 | XH | |||||||||||
Hydrolysis of SH | 1 | −1 | XH | ||||||||||
Hydrolysis of SHC | 1 | −1 | XH | ||||||||||
Hydrolysis of XS | 1 | −1 | XH | ||||||||||
Hydrolysis of XSS | −1 | 1 | XH | ||||||||||
Decay | −(1 − fS −fX) | fX | fS | −1 | bHXH | ||||||||
Parameter | COD | COD | COD | COD | COD | COD | O2 | COD | COD | COD | COD | Cell COD |
Wastewaters Parameters | Domestic [43] | Textile [28] |
---|---|---|
Total COD (mg/L), S1 + X1 | 415 | 1340 |
Total Soluble COD (mg/L), S1 | 120 | 965 |
Total Particulate COD (mg/L), X1 | 295 | 375 |
Readily Biodegradable COD (mg/L), SS1 | 40 | 280 |
Total Soluble Hydrolyzable COD (mg/L), SH1 + SHC1 | 62 | 460 |
Influent Soluble Hydrolyzable COD (mg/L), SH1 | 15 | 100 |
Captured Soluble Hydrolyzable COD (mg/L), SHC1 | 47 | 360 |
Total Soluble Inert COD (mg/L), SI1 + SIC1 | 18 | 225 |
Influent Soluble Inert COD (mg/L), SI1 | 10 | 135 |
Captured Soluble Inert COD (mg/L), SIC1 | 8 | 90 |
Total Particulate Hydrolyzable COD (mg/L), XS1 + XSS1 | 253 | 360 |
Influent Particulate Hydrolyzable COD (mg/L), XS1 | 113 | 162 |
Settleable Biodegradable COD (mg/L), XSS1 | 140 | 198 |
Total Particulate Inert COD (mg/L), XI1 + XIS1 | 42 | 15 |
Influent Particulate Inert COD (mg/L), XI1 | 19 | 7 |
Settleable Inert COD (mg/L), XIS1 | 23 | 8 |
Wastewater Type | Dual Hydrolysis | |||||||
---|---|---|---|---|---|---|---|---|
KS | bH | khS | KhS | khX | KhX | References | ||
Domestic | ||||||||
3.5 | 3 | 0.2 | 3.5 | 0.12 | 1.7 | 0.2 | [51] | |
4.2 | 3 | - | 1.6 | 0.07 | 0.8 | 0.04 | [52] | |
3.5 | 6 | 0.2 | 3.8 | 0.2 | 1.9 | 0.18 | [53] | |
4 | 4 | 0.18 | 2.8 | 0.03 | 1.1 | 0.1 | [54] | |
- | - | 0.24 | 3.1 | 0.2 | 1.2 | 0.5 | [55] | |
Selected for Model | 4.2 | 3 | 0.2 | 2.96 | 0.12 | 1.34 | 0.20 | |
Textile | ||||||||
- | - | - | 2.5 | 0.4 | 0.1 | 0.5 | [55] | |
4.1 | 5 | 0.18 | 3 | 0.05 | 1 | 0.5 | [56] | |
5.3 | 5 | 0.14 | 3 | 0.05 | 1 | 0.2 | [56] | |
3.6 | 15 | 0.14 | 0.8 | 0.05 | 0.5 | 0.15 | [56] | |
6 | 1 | 0.1 | 3.5 | 0.04 | 0.72 | 0.04 | [57] | |
Selected for Model | 3.6 | 15 | 0.14 | 2.45 | 0.09 | 0.68 | 0.28 |
Wastewaters | AS with Gravity Settling | AS with Membrane | |||||||
---|---|---|---|---|---|---|---|---|---|
SRT (d) | HRT (h) | SHE (mg/L) | SH Removal (%) | MLSS | HRT (h) | SHE (mg/L) | SH Removal (%) | MLSS | |
Domestic | |||||||||
0.3 | 0.7 | 60 | 3 | 4.400 | 0.2 | 14 | 6 | 10.200 | |
0.5 | 1.1 | 30 | 52 | 4.250 | 0.4 | 10 | 33 | 10.250 | |
1 | 2.2 | 15 | 76 | 4.190 | 0.7 | 8 | 53 | 10.100 | |
1.5 | 2.5 | 13 | 79 | 4.050 | 0.9 | 7 | 54 | 10.100 | |
2 | 3.2 | 9 | 85 | 4.000 | 1.4 | 5.5 | 67 | 10.050 | |
Textile | |||||||||
0.3 | 0.9 | 457 | 0.6 | 4.450 | 0.7 | 99 | 1 | 10.250 | |
0.5 | 2.2 | 212 | 54 | 4.300 | 0.85 | 54 | 46 | 10.240 | |
1 | 3.6 | 95 | 79 | 4.300 | 1.8 | 33 | 67 | 10.100 | |
1.5 | 5 | 56 | 88 | 4.150 | 2.2 | 29 | 71 | 10.000 | |
2 | 5.8 | 42 | 91 | 4.100 | 2.7 | 23 | 77 | 10.030 |
Wastewaters | AS with Gravity Settling | AS with Membrane | ||||||
---|---|---|---|---|---|---|---|---|
SRT (d) | HRT (h) | SHE (mg/L) | SH Removal (%) | MLSS | SHE (mg/L) | SH Removal (%) | MLSS | |
Domestic | ||||||||
0.3 | 0,4 | 60 | 3 | 4.800 | 14 | 7 | 5.500 | |
0.5 | 0.72 | 40 | 35 | 4.660 | 9 | 42 | 5.440 | |
1 | 1.44 | 25 | 61 | 4.520 | 6 | 60 | 5.210 | |
1.5 | 2.2 | 18 | 74 | 4.150 | 4.6 | 73 | 5.100 | |
2 | 2.9 | 13 | 81 | 4.160 | 3.4 | 77 | 5.150 | |
Textile | ||||||||
0.3 | 1.2 | 459 | 0.2 | 5.210 | 99 | 1 | 5.550 | |
0.5 | 2.4 | 197 | 57 | 5.165 | 27 | 73 | 5.470 | |
1 | 3.6 | 95 | 79 | 5.020 | 18 | 82 | 5.400 | |
1.5 | 4.3 | 68 | 85 | 5.000 | 15 | 85 | 5.210 | |
2 | 5 | 50 | 89 | 4.980 | 12 | 88 | 5.100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orhon, D.; Yucel, A.B.; Insel, G.; Solmaz, B.; Mermutlu, R.; Sözen, S. Appraisal of Super-Fast Membrane Bioreactors by MASM—A New Activated Sludge Model for Membrane Filtration. Water 2021, 13, 1963. https://doi.org/10.3390/w13141963
Orhon D, Yucel AB, Insel G, Solmaz B, Mermutlu R, Sözen S. Appraisal of Super-Fast Membrane Bioreactors by MASM—A New Activated Sludge Model for Membrane Filtration. Water. 2021; 13(14):1963. https://doi.org/10.3390/w13141963
Chicago/Turabian StyleOrhon, Derin, Ayse Begum Yucel, Güçlü Insel, Bülent Solmaz, Raif Mermutlu, and Seval Sözen. 2021. "Appraisal of Super-Fast Membrane Bioreactors by MASM—A New Activated Sludge Model for Membrane Filtration" Water 13, no. 14: 1963. https://doi.org/10.3390/w13141963
APA StyleOrhon, D., Yucel, A. B., Insel, G., Solmaz, B., Mermutlu, R., & Sözen, S. (2021). Appraisal of Super-Fast Membrane Bioreactors by MASM—A New Activated Sludge Model for Membrane Filtration. Water, 13(14), 1963. https://doi.org/10.3390/w13141963