Weather Risk Assessment for Collective Water Supply and Sewerage Systems
Abstract
:1. Introduction
2. Weather Risk
- Lack of cash instruments that would protect entities against the weather risk effects;
- Local character of risk, which limits weather phenomena to a specific geographical territory;
- Seasonality, which is the variability of weather phenomena over time (seasonal nature of the phenomena related to, i.a. the seasons of the year);
- Occurrence of the so-called fat tails phenomena with a low probability of occurrence are associated with high losses;
- Difficulty in transferring atmospheric phenomena to financial markets;
- Difficulty in local forecasting and determining the effects of atmospheric phenomena (various nature of changes, continuous or precipitous); they require the use of different derivatives (futures for continuous options and binary options for precipitous ones);
- Extensive monitoring infrastructure is required to measure weather phenomena;
- No correlation with other risk categories of operating a business.
- Understanding the risk connected with natural disasters;
- Increasing readiness to manage the risk of catastrophes;
- Investing in methods of action aimed at reducing the risk in the future (including early warning systems, protection of production assets, and increasing the security and functionality of critical infrastructure);
- Increasing catastrophe preparedness for a faster response to these phenomena.
- Collecting loss data resources to understand and identify risks, and their financial implications;
- Rewarding for activities contributing to the risk reduction, i.e., reduction of financial losses, where skillful risk management results in lower insurance premiums;
- Controlling losses and providing financial assistance in an effective manner;
- Supporting the resource recovery after extreme events.
- Creating and sharing maps of natural catastrophes;
- Conducting an appropriate spatial development policy;
- Adapting construction standards to new hazards and strengthening the role of construction supervision;
- Prevention and education.
- HDD temperature index (heating degree days), which is the heating season index, and CDD (cooling degree days), which is the summer season index (one of the first temperature indices, still the most popular, mainly in the USA);
- Minimum, maximum, or average temperature level in a particular period (dominating the European market);
- Number of critical days on which the temperature level was exceeded.
- Futures contracts;
- Forward contracts;
- Weather options (cap, floor, or collar [16]);
- Swaps.
- Type of the contract;
- Contract period (i.e., the start and end date of its validity);
- Base index (index structure representing one or more weather variables, which is the basis for the financial settlement of the contract);
- Primary and backup weather station (source of data necessary to calculate the desired weather index);
- Payout function (an instrument and monetary value of the index point).
3. Environmental Factors Affecting Water Supply and Sewage Systems Operation
4. Materials and Methods
- Daily precipitation index (for rainwater and combined sewerage systems) if the daily precipitation exceeds 50 mm;
- Frost day index (for water supply systems) if the average temperature is lower than −15 °C for the next 5 days;
- Hot day index (for tap water consumption) if the average temperature is higher than 25 °C for the next 5 days.
5. Results
5.1. Daily Precipitation Index
5.2. Frost Day Index
5.3. Hot Day Index
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalak, D. Derywaty pogodowe jako instrument efektywnego zarządzania ryzykiem pogodowym. Acta Innov. 2011, 1, 41–47. (In Polish) [Google Scholar]
- Preś, J. Zarządzanie Ryzykiem Pogodowym; CeDeWu: Warsaw, Poland, 2007; p. 17. (In Polish) [Google Scholar]
- Blachowski, D. Ryzyko pogodowe i pogodowe instrumenty pochodne w przedsiębiorstwach energetycznych. Zesz. Nauk. Uniw. Szczecińskiego Finans. Rynk. Finans. Ubezpieczenia 2011, 38, 639–648. (In Polish) [Google Scholar]
- Clemmons, L. Introduction to Weather Risk Management. In Weather Risk Management. Markets, Products and Applications; Banks, E., Ed.; Palgrave: New York, NY, USA, 2002; pp. 3–5. [Google Scholar]
- WRMA/PwC. The Weather Risk Management Industry. Survey Findings for April 2001 to March 2002, June 2002. Available online: http://www.wrma.org (accessed on 15 November 2020).
- Štulec, I.; Baković, T.; Hruška, D. Weather risk management in energy sector. In Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium, Proceedings of the 23rd International DAAAM Symposium Intelligent Manufacturing & Automation: Focus on Sustainability, Zadar, Croatia, 22–28 October 2012; Katalinić, B., Ed.; DAAAM International: Vienna, Austria, 2012; pp. 89–94. [Google Scholar]
- Smith, L.A. Integrating information, misinformation and desire: Improved weather-risk management for the energy sector. In UK Success Stories in Industrial Mathematics; Aston, P.J., Mulholland, A.J., Tant, K., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 289–296. [Google Scholar]
- Islip, D.; Wei, J.Z.; Kwon, R.H. Managing construction risk with weather derivatives. Eng. Econ. 2020. [Google Scholar] [CrossRef]
- Boateng, P.; Chen, Z.; Ogunlana, S. A conceptual system dynamic model to describe the impacts of critical weather conditions in megaproject construction. J. Constr. Proj. Manag. Innov. 2012, 2, 208–224. [Google Scholar]
- Franzoni, S.; Pelizzari, C. Weather Risk Management in Tourism Industry. Symphonya. Emerg. Issues Manag. 2016, 1, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Hess, U.; Richter, K.; Stoppa, A. Weather risk management for agriculture and agri-business in developing countries. In Climate Risk and the Weather Market: Financial Risk Management with Weather Hedges; Risk Books: London, UK, 2002. [Google Scholar]
- Molarius, R.; Könönen, V.; Leviäkangas, P.; Zulkarnain; Rönty, J.; Hietajärvi, A.-M.; Oiva, K. The extreme weather risk indicators (EWRI) for the European transport system. Nat. Hazards 2014, 72, 189–210. [Google Scholar] [CrossRef]
- Chapman, L. Weather and climate risks to road transport. Infrastruct. Asset Manag. 2015, 2, 58–68. [Google Scholar] [CrossRef]
- Liu, L.; Wen, Y.; Liang, Y.; Zhang, F.; Yang, T. Extreme Weather Impacts on Inland Waterways Transport of Yangtze River. Atmosphere 2019, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek-Kosmala, M. Weather Risk Management in Energy Sector: The Polish Case. Energies 2020, 13, 945. [Google Scholar] [CrossRef] [Green Version]
- Binkowski, P. Derywaty pogodowe—Geneza, rodzaje oraz zastosowanie. Współczesna Ekon. 2008, 2, 47–68. (In Polish) [Google Scholar]
- Michalak, D. Analysis of weather risk in agriculture as an important part of adaptation to climate change. Ekon. Sr. 2016, 2, 75–91. [Google Scholar]
- Pawłowski, J. Pogodowe instrumenty pochodne—Możliwości zawarcia transakcji na przykładzie producentów wody butelkowanej w Polsce. Acta Univ. Lodziensis Folia Oeconomica 2014, 2, 203–213. (In Polish) [Google Scholar]
- Czekaj, Z. Derywaty pogodowe jako instrument zarządzania ryzykiem pogodowym. Ruch Praw. Ekon. Soc. Jologiczny 2016, 78, 217–228. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Solaun, K.; Cerdá, E. The Impact of Climate Change on the Generation of Hydroelectric Power—A Case Study in Southern Spain. Energies 2017, 10, 1343. [Google Scholar] [CrossRef] [Green Version]
- Creutzig, F.; Agoston, P.; Goldschmidt, J.C.; Luderer, G.; Nemet, G.; Pietzcker, R.C. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2017, 2. [Google Scholar] [CrossRef]
- Waite, M.; Cohen, E.; Torbey, H.; Piccirilli, M.; Tian, Y.; Modi, V. Global trends in urban electricity demands for cooling and heating. Energy 2017, 127, 786–802. [Google Scholar] [CrossRef] [Green Version]
- Canales, F.A.; Jadwiszczak, P.; Jurasz, J.; Wdowikowski, M.; Ciapała, B.; Kaźmierczak, B. The impact of long-term changes in air temperature on renewable energy in Poland. Sci. Total. Environ. 2020, 729. [Google Scholar] [CrossRef]
- Ray, A.; Hughes, L.; Konisky, D.M.; Kaylor, C. Extreme weather exposure and support for climate change adaptation. Glob. Environ. Chang. 2017, 46, 104–113. [Google Scholar] [CrossRef]
- Guthrie, G. Real options analysis of climate-change adaptation: Investment flexibility and extreme weather events. Clim. Chang. 2019, 156, 231–253. [Google Scholar] [CrossRef]
- Dell, M.L.; Jones, B.F.; Olken, B.A. What Do We Learn from the Weather? The New Climate-Economy Literature. J. Econ. Lit. 2014, 53, 740–798. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.H.; Lane, J. An Overview of ‘Dangerous’ Climate Change. In Avoiding Dangerous Climate Change; Schellnhuber, H.J., Cramer, W., Nakicenovic, N., Wigley, T., Yohe, G., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 7–23. [Google Scholar]
- Klimat ryzyka. Available online: https://nawypadekgdy.pl/wp-content/uploads/2018/12/181212_PIU_raport-klimatyczny.pdf (accessed on 20 October 2020).
- Ruff, T.W.; Neelin, J.D. Long tails in regional surface temperature probability distributions with implications for extremes under global warming. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.D.; Diebold, F.X. Weather Forecasting for Weather Derivatives. J. Am. Stat. Assoc. 2005, 100, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Alaton, P.; Djehiche, B.; Stillberger, D. On modelling and pricing weather derivatives. Appl. Math. Financ. 2002, 9. [Google Scholar] [CrossRef]
- Liu, X. Weather Derivatives: A Contemporary Review and its Application in China. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2006. [Google Scholar]
- Ustawa z dnia 18 kwietnia 2002 r. o stanie klęski żywiołowej (Dz.U. 2002 Nr 62 poz. 558). (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20020620558/U/D20020558Lj.pdf (accessed on 10 October 2020).
- Ustawa z Dnia 26 Kwietnia 2007 Roku o Zarządzaniu Kryzysowym (Dz.U. z 2007 r. nr 89, poz.590 ze zm.). (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20070890590/U/D20070590Lj.pdf (accessed on 10 October 2020).
- Konstytucja Rzeczypospolitej Polskiej z Dnia 2 Kwietnia 1997 Roku (Dz. U. z 1997 r. Nr 78, poz. 483). (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU19970780483/U/D19970483Lj.pdf (accessed on 10 October 2020).
- Bac, M. Ryzyko katastroficzne jako przedmiot regulacji w ustawodawstwie polskim. In Ubezpieczenia Gospodarcze i Społeczne: Wybrane Zagadnienia Ekonomiczne; Sułkowska, W., Ed.; Wolters Kluwer: Warsaw, Poland, 2011; pp. 11–25. (In Polish) [Google Scholar]
- Ustawa z Dnia 21 Czerwca 2002 Roku o Stanie Wyjątkowym (Dz.U. z 2002 r. nr 113, poz. 985 ze zm.). (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20021130985/U/D20020985Lj.pdf (accessed on 10 October 2020).
- Ustawa z Dnia 22 Listopada 2002 Roku o Wyrównaniu Strat Majątkowych Wynikających z Ograniczenia w Czasie Stanu Nad-zwyczajnego Wolności Praw Człowieka i Obywatela (Dz.U. z 2002 r. nr 233, poz. 1955). (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20022331955/O/D20021955.pdf (accessed on 10 October 2020).
- Ustawa z Dnia 22 Sierpnia 2001 Roku o Bezpieczeństwie Imprez Masowych (Dz.U. z 2005 r. nr 108, poz. 909 ze zm.). (In Polish). Available online: https://eli.gov.pl/api/acts/DU/1997/680/text/I/D19970680.pdf (accessed on 10 October 2020).
- Ustawa z Dnia 18 Lipca 200 Roku—Prawo Wodne (Dz.U. z 2005 r. nr 239, poz. 2019 ze zm.). (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20011151229/U/D20011229Lj.pdf (accessed on 10 October 2020).
- Dekret z Dnia 23 Kwietnia 1953 Roku o Swiadczeniach w Celu Zwalczania Klęsk Zywiołowych (Dz.U. z 1953 r. nr 23, poz. 93 ze zm.). (In Polish). Available online: https://eli.gov.pl/eli/DU/1953/93/ogl/pol (accessed on 10 October 2020).
- Ustawa z Dnia 24 Sierpnia 1991 Roku o Ochronie Przeciwpożarowej (Dz.U. z 1991 r. nr 81, poz. 351 ze zm.). (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU19910810351/U/D19910351Lj.pdf (accessed on 10 October 2020).
- Ustawa z Dnia 8 Września 2006 Roku o Państwowym Ratownictwie Medycznym (Dz.U. z 2006 r. nr 191, poz. 1410 ze zm.). (In Polish). Available online: http://eli.sejm.gov.pl/eli/DU/2006/1410/ogl (accessed on 10 October 2020).
- Ustawa z Dnia 27 Kwietnia 2001 Roku—Prawo Ochrony Środowiska (Dz.U. z 2001 r. nr 62, poz. 627). (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20010620627/U/D20010627Lj.pdf (accessed on 10 October 2020).
- Rozporządzenie Rady Ministrów z Dnia 20 Lutego 2003 Roku w Sprawie Szczegółowych Zasad Udziału Pododdziałów i Oddziałów Sił Zbrojnych Rzeczypospolitej Polskiej w Zapobieganiu Skutkom Klęski Zywiołowej lub ich Usuwaniu (Dz.U. z 2003 r. nr 41, poz. 347). (In Polish). Available online: http://eli.sejm.gov.pl/eli/DU/2003/347/ogl (accessed on 10 October 2020).
- Brockett, P.L.; Wang, M.; Yang, C. Weather Derivatives and Weather Risk Management. Risk Manag. Insur. Rev. 2005, 8, 127–139. [Google Scholar] [CrossRef]
- Burchard-Dziubińska, M. Ryzyko pogodowe na rynku ubezpieczeń. Ekon. XXI Wieku 2016, 12, 46–56. (In Polish) [Google Scholar]
- Prewysz-Kwinto, P. Pogodowe instrumenty pochodne. In Innowacje na Rynkach Finansowych; CeDeWu: Warsaw, Poland, 2010; pp. 21–34. (In Polish) [Google Scholar]
- Szopa, A. Właściwości ryzyka pogodowego. Ann. Univ. Mariae Curie Skłodowska Sect. H Oeconomia 2012, 46, 445–452. (In Polish) [Google Scholar]
- United Nations General Assembly. The Sendai Framework for Disaster Risk Reduction 2015–2030. Resolution A/Res/69/283. Available online: https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf (accessed on 30 October 2020).
- Wahlström, M. New Sendai Framework Strengthens Focus on Reducing Disaster Risk. Int. J. Disaster Risk Sci. 2015, 6, 200–201. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 19 October 2020).
- ADMS—Agricultural Drought Monitoring System. Available online: http://www.susza.iung.pulawy.pl/ (accessed on 20 October 2020).
- Ratajewska, A. Aspekt bezpieczeństwa w planowaniu terenów zagrożonych powodzią. Tech. Issues 2016, 4, 68–77. (In Polish) [Google Scholar]
- Development of Urban Adaptation Plans for Cities with More than 100,000 Inhabitants in Poland. Available online: http://44mpa.pl/miejskie-plany-adaptacji/ (accessed on 20 October 2020).
- Geman, H.; Leonardi, M.P. Alternative approaches to weather derivatives pricing. Manag. Finance 2005, 31, 46–72. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, Y.; Dzandu, M.D.; Tang, Y.; Lu, X. Is temperature-index derivative suitable for China? Phys. A Stat. Mech. Appl. 2019, 536. [Google Scholar] [CrossRef]
- Cabrera, B.L.; Odening, M.; Ritter, M. Pricing rainfall futures at the CME. J. Bank. Finance 2013, 37, 4286–4298. [Google Scholar] [CrossRef]
- Cramer, S.; Kampouridis, M.; Freitas, A.A.; Alexandridis, A. Stochastic model genetic programming: Deriving pricing equations for rainfall weather derivatives. Swarm Evol. Comput. 2019, 46, 184–200. [Google Scholar] [CrossRef]
- Mentel, G. Wartość Zagrożona Jako Instrument Zarządzania Ryzykiem Pogodowym; Oficyna Wydawnicza Politechniki Rzeszowskiej: Rzeszów, Poland, 2017. (In Polish) [Google Scholar]
- Stulz, R.M. Should We Fear Derivatives? J. Econ. Perspect. 2004, 18, 173–192. [Google Scholar] [CrossRef] [Green Version]
- Banks, E. Weather Fundamentals. In Weather Risk Management. Markets, Products and Applications; Banks, E., Ed.; Palgrave: New York, NY, USA, 2002. [Google Scholar]
- Michalak, D. Charakterystyka derywatów pogodowych wraz z opisem wykorzystania instrumentu w Polsce i na świecie. Ekonomia 2013, 22, 73–85. (In Polish) [Google Scholar]
- Rajani, B.; Kleiner, Y.; Sink, J.-E. Exploration of the relationship between water main breaks and temperature covariates. Urban Water J. 2012, 9, 67–84. [Google Scholar] [CrossRef]
- Shamir, U.; Howard, C.D.D. An Analytic Approach to Scheduling Pipe Replacement. J. AWWA 1979, 71, 248–258. [Google Scholar] [CrossRef]
- Goulter, I.C.; Davidson, J.; Jacobs, P. Predicting water-main breakage rates. J. Water Resour. Plan. Manag. 1993, 119, 419–436. [Google Scholar] [CrossRef]
- Le Gat, Y.; Eisenbeis, P. Using maintenance records to forecast failures in water networks. Urban Water 2000, 3, 173–181. [Google Scholar] [CrossRef]
- Rak, J. Safety of Water Supply System; Polish Academy of Science: Warsaw, Poland, 2009. [Google Scholar]
- Tchórzewska-Cieślak, B.; Pietrucha-Urbanik, K.; Urbanik, M. Analysis of the gas network failure and failure prediction using the Monte Carlo simulation method. Ekspolatacja Niezawodn. Maint. Reliab. 2016, 18, 254–259. [Google Scholar] [CrossRef]
- Bhattarai, J. Study on the Corrosive Nature of Soil Towards the Buried-Structures. Sci. World 2013, 11, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Gould, S.J.F.; Boulaire, F.A.; Burn, S.; Zhao, X.L.; Kodikara, J.K. Seasonal factors influencing the failure of buried water reticulation pipes. Water Sci. Technol. 2011, 63, 2692–2699. [Google Scholar] [CrossRef]
- Harada, H. Statistics of the cold wave in the temperate region and prediction of the number of damaged service pipes. J. AWWA 1988, 57, 12–15. [Google Scholar]
- Wols, B.A.; Van Thienen, P. Impact of weather conditions on pipe failure: A statistical analysis. J. Water Supply: Res. Technol. 2014, 63, 212–223. [Google Scholar] [CrossRef]
- Barton, N.A.; Farewell, T.S.; Hallett, S.H.; Acland, T.F. Improving pipe failure predictions: Factors affecting pipe failure in drinking water networks. Water Res. 2019, 164. [Google Scholar] [CrossRef]
- Farmani, R.; Kakoudakis, K.; Behzadian, K.; Butler, D. Pipe Failure Prediction in Water Distribution Systems Considering Static and Dynamic Factors. Procedia Eng. 2017, 186, 117–126. [Google Scholar] [CrossRef]
- Bruaset, S.; Sægrov, S. An Analysis of the Potential Impact of Climate Change on the Structural Reliability of Drinking Water Pipes in Cold Climate Regions. Water 2018, 10, 411. [Google Scholar] [CrossRef] [Green Version]
- Rajani, B.; Tesfamariam, S. Uncoupled axial, flexural, and circumferential pipe–soil interaction analyses of partially supported jointed water mains. Can. Geotech. J. 2004, 41, 997–1010. [Google Scholar] [CrossRef]
- Walski, T.M.; Pelliccia, A. Economic analysisof water main breaks. J. Am. Water Works Ass. 1982, 74, 140–147. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K.; Żelazko, A. Approaches to Assess Water Distribution Failure. Period. Polytech. Civ. Eng. 2017, 61, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Pietrucha-Urbanik, K. Failure analysis and assessment on the exemplary water supply network. Eng. Fail. Anal. 2015, 57, 137–142. [Google Scholar] [CrossRef]
- Newport, R. Factors influencing the occurrence of bursts in iron water mains. Water Supply Manage. 1981, 3, 274–278. [Google Scholar]
- Kleiner, Y.; Rajani, B. Forecasting variations and trends inwater-main breaks. J. Infrastruct. Syst. 2002, 8, 122–131. [Google Scholar] [CrossRef]
- Hu, Y.; Hubble, D.W. Factors contributing to the failure of asbestos cement water mains. Can. J. Civ. Eng. 2007, 34, 608–621. [Google Scholar] [CrossRef]
- Laucelli, D.B.; Rajani, B.; Kleiner, Y.; Giustolisi, O. Study on relationships between climate-related covariates and pipe bursts using evolutionary-based modelling. J. Hydroinformatics 2013, 16, 743–757. [Google Scholar] [CrossRef]
- Kuliczkowska, E. Risk of structural failure in concrete sewers due to internal corrosion. Eng. Fail. Anal. 2016, 66, 110–119. [Google Scholar] [CrossRef]
- Pomeroy, R.D. Sanitary Sewer Design for Hydrogen Sulphide Control. Public Work. 1970, 101, 93–96. [Google Scholar]
- Buchert, L.; Cebulak, E.; Drwal-Tylmann, A.; Wojtczak-Gaglik, E.; Kilar, P.; Limanówka, D.; Łapińska, E.; Mizera, M.; Ogórek, S.; Pyrc, R.; et al. Vademecum: Niebezpieczne Zjawiska Meteorologiczne, Geneza, Skutki, Częstość Występowania, Część Pierwsza—Wiosna, Lato; IMGW-PIB: Warsaw, Poland, 2013. (In Polish) [Google Scholar]
- Wartalska, K.; Kaźmierczak, B.; Nowakowska, M.; Kotowski, A. Precipitation patterns for modeling land drainage in Poland. Urban Water J. 2020, 17, 333–343. [Google Scholar] [CrossRef]
- Żywiec, J.; Piegdoń, I.; Tchórzewska-Cieślak, B. Failure analysis of the water supply network in the aspect of climate changes on the example of the Central and Eastern Europe region. Sustainability 2019, 11, 6886. [Google Scholar] [CrossRef] [Green Version]
- Kutyłowska, M. Forecasting failure rate of water pipes. Water Supply 2019, 19, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Dawidowicz, J.; Czapczuk, A.; Piekarski, J. The application of artificial neural networks in the assessment of pressure losses in water pipes in the design of water distribution systems. Rocz. Ochr. Sr. 2018, 20, 292–308. [Google Scholar]
- Canales, F.A.; Gwoździej-Mazur, J.; Jadwiszczak, P.; Struk-Sokołowska, J.; Wartalska, K.; Wdowikowski, M.; Kaźmierczak, B. Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland. Water 2020, 12, 1932. [Google Scholar] [CrossRef]
- Ali, R.; Ismael, A.; Heryansyah, A.; Nawaz, N. Long Term Historic Changes in the Flow of Lesser Zab River, Iraq. Hydrology 2019, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Langat, P.K.; Kumar, L.; Koech, R. Temporal Variability and Trends of Rainfall and Streamflow in Tana River Basin, Kenya. Sustainability 2017, 9, 1963. [Google Scholar] [CrossRef] [Green Version]
- Arrieta-Castro, M.; Donado-Rodríguez, A.; Acuña, G.J.; Canales, F.A.; Teegavarapu, R.S.V.; Kaźmierczak, B. Analysis of Streamflow Variability and Trends in the Meta River, Colombia. Water 2020, 12, 1451. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters. Environ. Process. 2015, 2, 729–749. [Google Scholar] [CrossRef] [Green Version]
- Wijngaard, J.B.; Tank, A.K.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Clim. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Scherrer, S.C.; Fischer, E.M.; Posselt, R.; Liniger, M.A.; Croci-Maspoli, M.; Knutti, R. Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. J. Geophys. Res. Atmos. 2016, 121, 2626–2637. [Google Scholar] [CrossRef] [Green Version]
- Erlat, E.; Türkeş, M. Observed changes and trends in numbers of summer and tropical days, and the 2010 hot summer in Turkey. Int. J. Clim. 2013, 33, 1898–1908. [Google Scholar] [CrossRef]
- García-Valero, J.A.; Montávez, J.P.; Gómez-Navarro, J.J.; Jiménez-Guerrero, P. Attributing trends in extremely hot days to changes in atmospheric dynamics. Nat. Hazards Earth Syst. Sci. 2015, 15, 2143–2159. [Google Scholar] [CrossRef] [Green Version]
- Salinger, M.J.; Griffiths, G.M. Trends in New Zealand daily temperature and rainfall extremes. Int. J. Clim. 2001, 21, 1437–1452. [Google Scholar] [CrossRef]
- Zhai, P.; Pan, X. Trends in temperature extremes during 1951–1999 in China. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Erlat, E.; Türkeş, M. Analysis of observed variability and trends in numbers of frost days in Turkey for the period 1950–2010. Int. J. Clim. 2012, 32, 1889–1898. [Google Scholar] [CrossRef]
- Biazar, S.M.; Ferdosi, F.B. An investigation on spatial and temporal trends in frost indices in Northern Iran. Theor. Appl. Clim. 2020, 141, 907–920. [Google Scholar] [CrossRef]
- Anandhi, A.; Perumal, S.; Gowda, P.H.; Knapp, M.; Hutchinson, S.; Harrington, J.; Rice, C.W. Long-term spatial and temporal trends in frost indices in Kansas, USA. Clim. Chang. 2013, 120, 169–181. [Google Scholar] [CrossRef] [Green Version]
City | Maximum Precipitation Amounts | Trend | Number of Days with Precipitation above 50 mm | |||
---|---|---|---|---|---|---|
Min, mm | Mean, mm | Max, mm | Yes/No | Slope, mm/Decade | ||
Białystok | 16.6 | 37.7 | 90.6 | No | - | 12 |
Gdańsk | 17.4 | 36.9 | 118.0 | No | - | 8 |
Gorzów Wlkp | 17.6 | 35.8 | 77.4 | No | - | 6 |
Katowice | 19.2 | 42.0 | 81.6 | No | - | 16 |
Kielce | 17.0 | 38.8 | 155.2 | No | - | 9 |
Koszalin | 21.1 | 45.2 | 101.3 | No | - | 16 |
Kraków | 17.8 | 40.8 | 87.4 | No | - | 16 |
Lublin | 16.4 | 37.7 | 90.0 | No | - | 7 |
Łódź | 14.2 | 36.2 | 99.8 | No | - | 8 |
Olsztyn | 18.4 | 37.9 | 98.9 | No | - | 8 |
Opole | 20.0 | 39.9 | 99.0 | No | - | 10 |
Poznań | 12.3 | 34.4 | 85.7 | No | - | 6 |
Rzeszów | 14.0 | 37.8 | 65.2 | No | - | 12 |
Suwałki | 15.1 | 35.6 | 66.8 | No | - | 8 |
Szczecin | 14.4 | 33.0 | 74.3 | No | - | 5 |
Toruń | 17.0 | 36.8 | 101.6 | No | - | 8 |
Warszawa | 17.0 | 35.3 | 75.8 | No | - | 6 |
Wrocław | 17.2 | 39.5 | 74.4 | No | - | 11 |
Zielona Góra | 14.7 | 37.2 | 89.0 | No | - | 8 |
City | Minimum 5-Day Temperatures | Trend | Frequency of Occurrence 5-Day Temperatures below −15 °C | |||
---|---|---|---|---|---|---|
Min, °C | Mean, °C | Max, °C | Yes/No | Slope, °C/Decade | ||
Białystok | −22.7 | −13.3 | −5.6 | No | - | 19 |
Gdańsk | −16.9 | −8.8 | −1.4 | No | - | 4 |
Gorzów Wlkp. | −17.8 | −8.7 | −2.1 | No | - | 3 |
Katowice | −18.6 | −10.3 | −4.4 | No | - | 8 |
Kielce | −20.8 | −11.5 | −5.9 | No | - | 10 |
Koszalin | −15.2 | −7.7 | −1.9 | No | - | 2 |
Kraków | −20.3 | −11.1 | −5.2 | No | - | 10 |
Lublin | −21.0 | −12.0 | −5.8 | No | - | 14 |
Łódź | −20.7 | −10.6 | −4.8 | No | - | 11 |
Olsztyn | −22.3 | −12.0 | −3.9 | No | - | 16 |
Opole | −19.0 | −9.4 | −1.5 | No | - | 7 |
Poznań | −20.1 | −9.3 | −3.2 | No | - | 6 |
Rzeszów | −19.1 | −11.5 | −5.4 | No | - | 11 |
Suwałki | −23.2 | −14.2 | −6.2 | No | - | 28 |
Szczecin | −17.1 | −7.8 | −1.9 | No | - | 2 |
Toruń | −22.3 | −10.5 | −3.5 | No | - | 12 |
Warszawa | −21.3 | −11.1 | −4.4 | No | - | 13 |
Wrocław | −20.4 | −9.2 | −1.4 | No | - | 6 |
Zielona Góra | −19.2 | −9.0 | −2.3 | No | - | 2 |
City | Maximum 5-Day Temperatures | Trend | Frequency of Occurrence 5-Day Temperatures above 25 °C | |||
---|---|---|---|---|---|---|
Min, °C | Mean, °C | Max, °C | Yes/No | Slope, °C/Decade | ||
Białystok | 18.5 | 22.0 | 25.2 | yes | 0.50 | 1 |
Gdańsk | 18.5 | 21.4 | 25.1 | yes | 0.39 | 1 |
Gorzów Wlkp. | 20.2 | 23.6 | 28.6 | yes | 0.41 | 10 |
Katowice | 20.6 | 23.0 | 26.5 | yes | 0.61 | 7 |
Kielce | 19.3 | 22.6 | 25.7 | yes | 0.58 | 3 |
Koszalin | 19.4 | 21.9 | 26.3 | yes | 0.33 | 2 |
Kraków | 19.9 | 22.9 | 26.5 | yes | 0.78 | 7 |
Lublin | 19.7 | 22.6 | 26.1 | yes | 0.67 | 4 |
Łódź | 19.7 | 23.4 | 28.3 | yes | 0.48 | 7 |
Olsztyn | 19.1 | 22.4 | 26.1 | yes | 0.42 | 3 |
Opole | 21.3 | 23.7 | 27.7 | yes | 0.48 | 13 |
Poznań | 20.2 | 23.7 | 26.9 | yes | 0.45 | 11 |
Rzeszów | 20.4 | 22.9 | 26.3 | yes | 0.78 | 7 |
Suwałki | 17.9 | 21.8 | 26.0 | yes | 0.57 | 1 |
Szczecin | 19.9 | 22.8 | 27.7 | no | - | 3 |
Toruń | 20.3 | 23.5 | 27.8 | yes | 0.41 | 9 |
Warszawa | 20.2 | 23.5 | 27.6 | yes | 0.63 | 13 |
Wrocław | 21.0 | 23.3 | 27.7 | yes | 0.63 | 8 |
Zielona Góra | 20.6 | 24.0 | 29.5 | no | - | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rak, J.R.; Wartalska, K.; Kaźmierczak, B. Weather Risk Assessment for Collective Water Supply and Sewerage Systems. Water 2021, 13, 1970. https://doi.org/10.3390/w13141970
Rak JR, Wartalska K, Kaźmierczak B. Weather Risk Assessment for Collective Water Supply and Sewerage Systems. Water. 2021; 13(14):1970. https://doi.org/10.3390/w13141970
Chicago/Turabian StyleRak, Janusz R., Katarzyna Wartalska, and Bartosz Kaźmierczak. 2021. "Weather Risk Assessment for Collective Water Supply and Sewerage Systems" Water 13, no. 14: 1970. https://doi.org/10.3390/w13141970
APA StyleRak, J. R., Wartalska, K., & Kaźmierczak, B. (2021). Weather Risk Assessment for Collective Water Supply and Sewerage Systems. Water, 13(14), 1970. https://doi.org/10.3390/w13141970