Tomato and Watermelon Production with Mulches and Automatic Drip Irrigation in North Dakota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Field Layout
2.3. Soil Analysis
2.4. Mulch
2.5. Irrigation System
2.5.1. Drip
2.5.2. Water Supply
2.5.3. Scheduling
2.5.4. Controller
2.6. Measurements
2.6.1. Rainfall
2.6.2. Soil Water Potential and Soil Temperature Measurements
2.6.3. Groundwater
2.6.4. Vegetables
2.7. Vegetable Management
2.8. Field Observations
2.9. Fruit Quality Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Soil Moisture and Temperature
3.3. Vegetable Yield
3.4. Vegetable Quality
3.5. Irrigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NDSU Extension. North Dakota Agriculture. Ag Statistics No. 87. 2018. Available online: https://www.nass.usda.gov/Statistics_by_State/North_Dakota/Publications/Annual_Statistical_Bulletin/2018/ND-Annual-Bulletin18.pdf (accessed on 8 July 2021).
- USDA NASS. Census of Agriculture for Tomato and Watermelon for 2012 and 2017. Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_State_Level/North_Dakota/st38_1_0036_0036.pdf (accessed on 8 July 2021).
- Aguyoh, J.; Taber, H.G.; Lawson, V. Maturity of fresh market sweet corn with direct seeded plants, transplants, clear plastic mulch, and row cover combinations. HortTechnology 1999, 9, 420–425. [Google Scholar] [CrossRef]
- Kwabiah, A.B. Growth, maturity, and yield responses of silage maize (Zea mays L.) to hybrid, planting date and plastic mulch. J. New Seeds. 2005, 7, 37–59. [Google Scholar] [CrossRef]
- Dı´az-Pe´rez, J.C.; Batal, K.D. Colored plastic film mulches affect tomato growth and yield via changes in root-zone temperature. J. Amer. Soc. Hort. Sci. 2002, 127, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Kara, B.; Atar, B. Effects of mulch practices on fresh ear yield and yield components of sweet corn. Turkish J. Agric. For. 2013, 37, 281–287. [Google Scholar]
- Kwabiah, A.B. Growth and yield of sweet corn (Zea mays L.) cultivars in response to planting date and plastic mulch in a short-season environment. Sci. Hortic. 2004, 102, 147–166. [Google Scholar] [CrossRef]
- Liu, C.A.; Jin, S.L.; Zhou, L.M.; Jia, Y.; Li, F.M.; Xiong, Y.C.; Li, X.G. Effects of plastic film mulch and tillage on maize productivity and soil parameters. Europe. J. Agron. 2009, 31, 241–249. [Google Scholar]
- Zhang, S.; Li, P.; Yang, X.; Wang, Z.; Chen, X. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil Tillage Res. 2011, 112, 92–97. [Google Scholar] [CrossRef]
- Zhou, L.M.; Li, F.M.; Jin, S.L.; Song, Y. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crop. Res. 2009, 113, 41–47. [Google Scholar] [CrossRef]
- Bye, H.D. Sweet Corn Production with Different Mulches, Varieties, and Planting Dates in North Dakota. Master’s Thesis, Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, USA, 2016. [Google Scholar]
- Jia, X.; Ransom, J.; Roy, D. Prediction of phenological development and maturity of two corn hybrids in eastern North Dakota. In Proceedings of the 2014 ASABE Annual International Meeting, Montreal, QC, Canada, 12–16 July 2014. Paper No. 1913820. [Google Scholar]
- Lament, W.J. Plastic mulches for the production of vegetable crops. HortTechnology 1993, 3, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Jiménez, L.; Zermeño-González, A.; Munguía-López, J.; Quezada-Martín, M.A.R.; De La Rosa-Ibarra, M. Photosynthesis, soil temperature and yield of cucumber as affected by colored plastic mulch. Acta Agric. Scand. Sect. B Soil Plant Sci. 2008, 58, 372–378. [Google Scholar] [CrossRef]
- Liakatas, A.; Clark, J.A.; Monteith, J.L. Measurements of the heat balance under plastic mulches. Part I. Radiation balance and soil heat flux. Agric. Meteorol. 1986, 36, 227–239. [Google Scholar] [CrossRef]
- Souvandouane, S.M.; Esguerra, K.H.; Heo, C.M.; Rico, S.C.L. Effects of planting dates and mulch types on the growth, yield and chemical properties of waxy corn crosses SonjajangxKNU-7 and AsanxKNU-7. Korean J. Crop Sci. 2010, 55, 91–97. [Google Scholar]
- Ham, M.; Kluitenberg, G.J.; Lamont, W.J. Optical properties of plastic mulches affect the field temperature regime. J. Am. Soc. Hort. Sci. 1993, 118, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Tarara, J.M. Microclimate modification with plastic mulch. Hort Sci. 2000, 35, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.K.; Akanda, A.R.; Rahman, M.S.; Hossain, M.A. Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant Soil Environ. 2015, 61, 97–102. [Google Scholar]
- Romic, D.; Borosic, J.; Poljak, M.; Romic, M. Polyethylene mulches and drip irrigation increase growth and yield in watermelon (Citrullus lanatus L.). Eur. J. Hort. Sci. 2003, 68, 162–168. [Google Scholar]
- Shrivastava, P.K.; Parikh, M.M.; Sawani, N.G.; Raman, S. Effect of drip irrigation and mulching on tomato yield. Agric. Water Manag. 1994, 25, 179–184. [Google Scholar] [CrossRef]
- Marouelli, W.A.; Silva, W.L.C. Water tension thresholds for processing tomatoes under drip irrigation in Central Brazil. Irrig. Sci. 2007, 25, 411–418. [Google Scholar] [CrossRef]
- Ngouajio, M.; Wang, G.; Goldy, R. Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch. Agric. Water Manag. 2007, 87, 285–291. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual-Seva, N.; Nájera, I.; Giner, A.; Baixauli, C.; Pascual, B. Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions. Agric. Water Manag. 2019, 212, 99–110. [Google Scholar] [CrossRef]
- Amayreh, J.; Al-Abed, N. Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch. Agric. Water Manag. 2005, 73, 247–254. [Google Scholar] [CrossRef]
- Yang, P.; Hu, H.; Tian, F.; Zhang, Z.; Dai, C. Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China. Agric. Water Manag. 2016, 171, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Dukes, M. Two Decades of Smart Irrigation Controllers in the U.S. Landscape Irrigation. Trans. ASABE 2020, 63, 1593–1601. [Google Scholar] [CrossRef]
- Munoz-Carpena, R.; Dukes, M.D.; Li, Y.C.; Klassen, W. Field comparison of tensiometer and granular matrix sensor automatic drip irrigation on tomato. Hort. Technol. 2005, 15, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Al-Ajlouni, M.G.; Vanleeuwen, D.M.; Hilaire, R.S. Performance of weather-based residential irrigation controllers in a desert environment. J. Am. Water Work. Assoc. 2012, 104, 608–621. [Google Scholar] [CrossRef]
- Gong, X.; Qiu, R.; Sun, J.; Ge, J.; Li, Y.; Wang, S. Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation. Agric. Water Manag. 2020, 235, 106–154. [Google Scholar] [CrossRef]
- Haley, M.B.; Dukes, M.D. Validation of Landscape Irrigation Reduction with Soil Moisture Sensor Irrigation Controllers. J. Irrig. Drain. Eng. 2012, 138, 135–144. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- NDAWN. North Dakota Agricultural Weather Network. Available online: http://ndawn.ndsu.nodak.edu/ (accessed on 26 June 2021).
- Vaddevolu, U.B.P.; Jia, X.; Scherer, T.F.; Lee, C. Automatic sensor controlled drip irrigation under mulches for tomato and watermelon productions. In Proceedings of the 2020 ASABE International Meeting, Omaha, NE, USA, 12–15 July 2020; p. 2001035. [Google Scholar]
- Roy, D.; Jia, X.; Steele, D.D.; Lin, D. Development and comparison of soil water release curves for three soils in the Red River Valley. USA. Soil Sci. Soc. Am. J. 2018, 82, 568–577. [Google Scholar] [CrossRef]
- ND SWC. Standards of Quality for Waters of the State. Chapter 33.1-16-02.1. Available online: https://www.legis.nd.gov/information/acdata/pdf/33.1-16-01.1.pdf (accessed on 12 June 2021).
- Farzi, R.; Gholami, M.; Baninasab, B.; Gheysari, M. Evaluation of different mulch materials for reducing soil surface evaporation in semi-arid region. Soil Use Manag. 2017, 33, 120–128. [Google Scholar] [CrossRef]
- Miller, G.L.; Farahani, H.J.; Hassell, R.L.; Khalilian, A.; Adelberg, J.W.; Wells, C.E. Field evaluation and performance of capacitance probes for automatic drip irrigation of watermelon. Agric. Water Manag. 2014, 131, 124–134. [Google Scholar] [CrossRef]
- Li, Y.; Shao, M.; Wang, W.; Wang, Q.; Horton, R. Open-hole effects of perforated plastic mulches on soil water evaporation. Soil Sci. 2003, 168, 751–758. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Li, S.Q.; Gao, Y.J.; Tian, X.H. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agric. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Li, H.; Yang, X.; Chen, H.; Cui, Q.; Yuan, G.; Han, X.; Wei, C.; Zhang, Y.; Ma, J.; Zhang, X. Water requirement characteristics and the optimal irrigation schedule for the growth, yield, and fruit quality of watermelon under plastic film mulching. Sci. Hortic. 2018, 241, 74–82. [Google Scholar] [CrossRef]
- Ray, M.; Biswasi, S. Impact of mulching on crop production: A review. Trends Biosci. 2016, 9, 757–767. [Google Scholar]
- Singh, R.; Kumar, S.; Nangare, D.D.; Meena, M.S. Drip irrigation and black polyethylene mulch influence on growth, yield and water-use efficiency of tomato. Afr. J. Agric. Res. 2009, 4, 1427–1430. [Google Scholar]
2019 | 2020 | |||
---|---|---|---|---|
Avg | Std | Avg | Std | |
NO3-N (kg N/ha) 0–15 cm | 18.51 | 4.51 | 6.75 | 2.15 |
15–61 cm | 62.24 | 8.43 | 33.95 | 11.76 |
P (mg/L) | 21.50 | 4.81 | 26.63 | 5.95 |
K (mg/L) | 368.13 | 35.95 | 480.63 | 31.78 |
pH | 6.96 | 0.09 | 6.60 | 0.14 |
EC (dS/m) | 0.41 | 0.06 | 0.39 | 0.03 |
Organic Matter (%) | 7.74 | 0.99 | 6.31 | 0.53 |
Parameters | Depth |
---|---|
(0–45 cm) | |
Sand (%) | 5 |
Silt (%) | 47 |
Clay (%) | 48 |
Bulk density (g/cm3) | 1.08 |
Saturation (cm3/cm3) | 0.59 |
Field capacity (cm3/cm3) | 0.41 |
Permanent wilting point (cm3/cm3) | 0.26 |
Tomato | Watermelon | |||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
Seeded | 22 Apr | 7 Apr | 22 Apr | 20 Apr |
Transplanted | 14 Jun | 30 May | 14 Jun | 30 May |
Fruit growth | 28 Jun | 24 Jun | 22 Jul | 28 Jun |
Start harvest | 19 Aug | 24 Aug | 6 Sep | 5 Aug |
End harvest | 8 Oct | 2 Oct | 2 Oct | 9 Sep |
Year | Month | Tmax (°C) | Tmin (°C) | Tavg (°C) | Tsoil (°C) | Uavg (m/s) | Umax (m/s) | Rs (MJ/m2) | PET (mm/day) | Rain (mm/mon) |
---|---|---|---|---|---|---|---|---|---|---|
2019 | May | 17.57 | 5.30 | 11.43 | 11.28 | 7.18 | 21.50 | 18.79 | 5.03 | 69.65 |
June | 25.62 | 13.71 | 19.67 | 19.45 | 7.03 | 23.47 | 20.75 | 6.41 | 82.75 | |
July | 27.86 | 17.08 | 22.47 | 23.17 | 5.83 | 20.08 | 23.25 | 6.09 | 121.26 | |
August | 24.77 | 14.82 | 19.80 | 20.82 | 6.03 | 19.16 | 18.91 | 4.76 | 89.69 | |
September | 21.61 | 12.10 | 16.85 | 16.87 | 6.99 | 22.67 | 12.42 | 3.24 | 106.81 | |
October | 9.71 | 2.28 | 5.99 | 7.55 | 8.72 | 22.60 | 7.61 | 1.84 | 87.78 | |
Avg/Total | 21.19 | 10.88 | 16.04 | 16.52 | 6.96 | 21.58 | 16.96 | 4.56 | 557.94 | |
2020 | May | 18.34 | 6.95 | 12.64 | 12.52 | 8.01 | 23.32 | 21.14 | 5.80 | 37.92 |
June | 28.29 | 15.58 | 21.94 | 20.20 | 9.00 | 27.54 | 23.63 | 7.89 | 66.75 | |
July | 28.62 | 17.72 | 23.17 | 23.28 | 6.38 | 24.04 | 24.08 | 6.51 | 133.38 | |
August | 26.88 | 15.46 | 21.17 | 22.30 | 5.88 | 20.90 | 18.93 | 4.93 | 122.33 | |
September | 20.81 | 8.97 | 14.89 | 16.26 | 7.12 | 22.88 | 13.61 | 4.11 | 22.10 | |
October | 9.17 | −1.18 | 4.00 | 7.79 | 8.03 | 23.88 | 9.44 | 2.60 | 21.49 | |
Avg/Total | 22.02 | 10.58 | 16.30 | 17.06 | 7.40 | 23.76 | 18.47 | 5.31 | 403.97 |
Crop | Year | Treatment | Depth (cm) | June | July | August | September | October | Average |
---|---|---|---|---|---|---|---|---|---|
Tomato | 2019 | PF | 15 | 20.74 | 23.09 | 20.50 | 16.71 | 10.24 | 18.26 |
BP | 15 | 22.95 | 25.31 | 21.81 | 17.71 | 11.22 | 19.80 | ||
CP | 15 | 24.05 | 27.48 | 24.90 | 19.13 | 12.30 | 21.57 | ||
NM | 15 | 21.72 | 23.23 | 21.44 | 17.12 | 9.87 | 18.68 | ||
PF | 30 | 18.56 | 21.40 | 20.33 | 16.93 | 11.82 | 17.81 | ||
BP | 30 | 20.10 | 23.00 | 20.93 | 17.51 | 12.45 | 18.80 | ||
CP | 30 | 22.93 | 26.00 | 23.68 | 18.83 | 12.78 | 20.84 | ||
NM | 30 | 19.13 | 21.86 | 20.70 | 17.05 | 10.97 | 17.94 | ||
2020 | PF | 15 | 20.45 | 23.22 | 21.97 | 16.42 | - | 20.52 | |
BP | 15 | 21.55 | 23.85 | 22.18 | 16.65 | - | 21.06 | ||
CP | 15 | 22.71 | 24.83 | 23.10 | 17.77 | - | 22.10 | ||
NM | 15 | 20.69 | 23.44 | 21.72 | 16.07 | - | 20.48 | ||
PF | 30 | 21.63 | 24.50 | 22.28 | 15.81 | - | 21.05 | ||
BP | 30 | 23.01 | 24.77 | 22.05 | 16.20 | - | 21.51 | ||
CP | 30 | 24.17 | 25.96 | 23.49 | 17.43 | - | 22.76 | ||
NM | 30 | 21.50 | 24.57 | 22.09 | 15.35 | - | 20.88 | ||
Watermelon | 2019 | PF | 15 | 20.49 | 22.43 | 20.17 | 16.68 | 10.66 | 18.09 |
BP | 15 | 23.12 | 24.20 | 20.47 | 17.16 | 11.09 | 19.21 | ||
CP | 15 | 25.94 | 25.70 | 21.13 | 17.61 | 11.85 | 20.45 | ||
NM | 15 | 21.29 | 22.68 | 19.87 | 16.44 | 10.00 | 18.06 | ||
PF | 30 | 18.63 | 21.23 | 19.88 | 16.74 | 11.68 | 17.63 | ||
BP | 30 | 20.12 | 22.45 | 20.33 | 17.44 | 12.28 | 18.53 | ||
CP | 30 | 22.28 | 24.13 | 20.74 | 17.55 | 12.43 | 19.43 | ||
NM | 30 | 19.37 | 21.56 | 19.72 | 16.60 | 11.02 | 17.65 | ||
2020 | PF | 15 | 21.05 | 22.94 | 21.64 | 16.20 | - | 20.46 | |
BP | 15 | 21.53 | 22.98 | 21.62 | 16.77 | - | 20.73 | ||
CP | 15 | 23.19 | 23.14 | 21.81 | 17.50 | - | 21.41 | ||
NM | 15 | 20.85 | 22.52 | 20.81 | 16.23 | - | 20.10 | ||
PF | 30 | 21.96 | 22.78 | 21.13 | 15.36 | - | 20.31 | ||
BP | 30 | 23.08 | 23.92 | 21.91 | 16.05 | - | 21.24 | ||
CP | 30 | 24.17 | 23.24 | 21.82 | 17.22 | - | 21.61 | ||
NM | 30 | 22.09 | 22.85 | 21.08 | 15.73 | - | 20.44 |
Treatment | Tomato (Mg ha−1) | Watermelon (Mg ha−1) | ||
---|---|---|---|---|
Year | 2019 | 2020 | 2019 | 2020 |
DI BP | 26.38 | 40.24 | 55.11 | 144.67 |
DI CP | 21.1 | 22.4 | 69.43 | 165.55 |
DI PF | 23.86 | 34.31 | 35.01 | 153.95 |
DI NM | 29.77 | 34.28 | 28.15 | 147.47 |
NI BP | 34.32 | 27.56 | 44.75 | 132.03 |
NI CP | 27.46 | 25.91 | 79.30 | 109.62 |
NI PF | 29.84 | 23.91 | 30.89 | 123.54 |
NI NM | 41.63 | 18.54 | 38.72 | 113.91 |
Average | 29.3 | 28.4 | 47.67 | 136.34 |
pH | EC (mS/cm) | Sugar Content (%) | ||||
---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
DI BP | 4.1 | 4.1 | 4.1 | 4.0 | 4.9 | 5.8 |
DI CP | 4.1 | 4.0 | 4.0 | 4.0 | 4.9 | 7.3 |
DI PF | 4.1 | 4.0 | 4.0 | 4.0 | 4.9 | 5.6 |
DI NM | 4.1 | 4.2 | 4.0 | 4.1 | 4.9 | 5.8 |
NI BP | 4.2 | 4.0 | 4.0 | 4.0 | 5.4 | 8.2 |
NI CP | 4.2 | 3.9 | 4.0 | 4.1 | 4.9 | 5.7 |
NI PF | 4.2 | 4.0 | 4.2 | 4.0 | 4.9 | 6.0 |
NI NM | 4.1 | 4.2 | 4.1 | 4.0 | 5.1 | 6.2 |
pH | EC (dS/cm) | Sugar content (%) | ||||
---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
DI BP | 5.7 | 5.2 | 3.3 | 3.6 | 9.4 | 10.3 |
DI CP | 5.9 | 5.2 | 3.4 | 3.7 | 10.2 | 11.0 |
DI PF | 5.4 | 5.0 | 3.2 | 3.8 | 8.2 | 10.2 |
DI NM | 5.4 | 5.2 | 3.2 | 3.8 | 8.7 | 9.9 |
NI BP | 5.8 | 5.3 | 2.9 | 3.3 | 10.1 | 10.2 |
NI CP | 5.8 | 5.1 | 3.2 | 3.5 | 9.8 | 10.3 |
NI PF | 5.5 | 5.2 | 3.1 | 3.6 | 9.1 | 9.8 |
NI NM | 5.7 | 5.3 | 3.2 | 3.5 | 9.6 | 10.2 |
Vegetable | Year | Source | Weight (g) | Diameter (mm) | EC (dS/m) | pH | Sugar (%) |
---|---|---|---|---|---|---|---|
Tomato | 2019 | Mulch | ** | *** | ** | ||
Irrigation | |||||||
Interaction | |||||||
2020 | Mulch | ** | * | ||||
Irrigation | ** | *** | |||||
Interaction | * | ||||||
Watermelon | 2019 | Mulch | *** | * | ** | * | |
Irrigation | |||||||
Interaction | |||||||
2020 | Mulch | ** | *** | * | |||
Irrigation | ** | ||||||
Interaction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaddevolu, U.B.P.; Lester, J.; Jia, X.; Scherer, T.F.; Lee, C.W. Tomato and Watermelon Production with Mulches and Automatic Drip Irrigation in North Dakota. Water 2021, 13, 1991. https://doi.org/10.3390/w13141991
Vaddevolu UBP, Lester J, Jia X, Scherer TF, Lee CW. Tomato and Watermelon Production with Mulches and Automatic Drip Irrigation in North Dakota. Water. 2021; 13(14):1991. https://doi.org/10.3390/w13141991
Chicago/Turabian StyleVaddevolu, Uday Bhanu Prakash, Justin Lester, Xinhua Jia, Thomas F. Scherer, and Chiwon W. Lee. 2021. "Tomato and Watermelon Production with Mulches and Automatic Drip Irrigation in North Dakota" Water 13, no. 14: 1991. https://doi.org/10.3390/w13141991
APA StyleVaddevolu, U. B. P., Lester, J., Jia, X., Scherer, T. F., & Lee, C. W. (2021). Tomato and Watermelon Production with Mulches and Automatic Drip Irrigation in North Dakota. Water, 13(14), 1991. https://doi.org/10.3390/w13141991