Hybrid Scour Depth Prediction Equations for Reliable Design of Bridge Piers
Abstract
:1. Introduction
Authors | Symbol | Equation | Description |
---|---|---|---|
Hancu [34] | YHAN | ||
Breusers et al. [35] | YBRE | Kθ is the correction factor for angle of attack flow Ks is the correction factor for pier nose shape | |
Jain and Fisher [36] | YJAF | The greater of the two scour depths | |
Jain [37] | YJAI | ||
Khalfin [38] | YKHA | ||
Melville and Sutherland [39] | YMAS | ||
Gao et al. [40] | YGAO | n = 1 for clear–water | |
Simplified Gao et al. [40] | YSGAO | for clear water | |
Melville [18] | YMEL | ||
Sheppard and Renna [41] | YFDOT |
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wardhana, K.; Hadipriono, F.C. Analysis of Recent Bridge Failures in the United States. J. Perform. Constr. Facil. 2003, 17, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Maddison, B. Scour failure of bridges. Proc. Inst. Civ. Eng. Forensic Eng. 2012, 165, 39–52. [Google Scholar] [CrossRef]
- Link, O.; García, M.; Pizarro, A.; Alcayaga, H.; Palma, S. Local Scour and Sediment Deposition at Bridge Piers during Floods. J. Hydraul. Eng. 2020, 146, 04020003. [Google Scholar] [CrossRef]
- Carnacina, I.; Pagliara, S.; Leonardi, N. Bridge pier scour under pressure flow conditions. River Res. Appl. 2019, 35, 844–854. [Google Scholar] [CrossRef]
- Boothroyd, R.J.; Williams, R.D.; Hoey, T.B.; Tolentino, P.L.; Yang, X. National-scale assessment of decadal river migration at critical bridge infrastructure in the Philippines. Sci. Total Environ. 2021, 768, 144460. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Hamidifar, H.; Khajenoori, L. Mean Flow Structure and Local Scour around Single and Two Columns Bridge Piers. Irrig. Sci. Eng. 2019, 42, 75–90. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Melville, B.W.; Ball, J. Three-dimensional analysis of coherent turbulent flow structure around a single circular bridge pier. Environ. Fluid Mech. 2014, 14, 821–847. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Shrestha, C.K.; Zahedani, M.R.; Ball, J.; Khabbaz, H. Experimental study of flow structure around two in-line bridge piers. Proc. Inst. Civ. Eng. Water Manag. 2018, 171, 311–327. [Google Scholar] [CrossRef]
- Carnacina, I.; Lescova, A.; Pagliara, S. A Methodology to Measure Flow Fields at Bridge Piers in the Presence of Large Wood Debris Accumulation Using Acoustic Doppler Velocimeters. In Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2020; Volume 39, pp. 17–25. [Google Scholar]
- Carnacina, I.; Leonardi, N.; Pagliara, S. Characteristics of Flow Structure around Cylindrical Bridge Piers in Pressure-Flow Conditions. Water 2019, 11, 2240. [Google Scholar] [CrossRef] [Green Version]
- Behrouzi, Z.; Hamidifar, H.; Zomorodian, M.A. Numerical simulation of flow velocity around single and twin bridge piers with different arrangements using the Fluent model. Amirkabir J. Civ. Eng. 2021, 53, 15. [Google Scholar] [CrossRef]
- Kayatürk, Ş.Y. Scour and Scour Protection at Bridge Abutments; Middle East Technical University: Ankara, Turkey, 2005. [Google Scholar]
- Kellermann, P.; Schönberger, C.; Thieken, A.H. Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL). Hazards Earth Syst. Sci. 2016, 16, 2357–2371. [Google Scholar] [CrossRef] [Green Version]
- MRUDI. Ministry of Roads & Urban Development Islamic Republic of Iran. Available online: https://www.mrud.ir/news-view/ArticleId/18024 (accessed on 24 November 2020).
- Macky, G.H. Survey of Roading Expenditure Due to Scour; Department of Scientific and Industrial Research, Hydrology Centre: Christchurch, New Zealand, 1990. [Google Scholar]
- Armitage, N.; Cunninghame, M.; Kabir, A.; Abban, B. Local Scour in Rivers. The Extent of the Problem in South Africa, The State of the Art of Numerical Modelling; University of Cape Town: Cape Town, South Africa, 2007. [Google Scholar]
- Nemry, F.; Demirel, H. Impacts of Climate Change on Transport: A Focus on Road and Rail Transport Infrastructures; Publications Office of the European Union, EU Science Hub: Luxembourg, 2012. [Google Scholar]
- Melville, B.W. Pier and Abutment Scour: Integrated Approach. J. Hydraul. Eng. 1997, 123, 125–136. [Google Scholar] [CrossRef]
- Parola, J.; Jones, J.S. Sizing riprap to protect bridge piers from scour. Transp. Res. Rec. 1991, 1290, 276–280. [Google Scholar]
- Johnson, P.A. Comparison of Pier-Scour Equations Using Field Data. J. Hydraul. Eng. 1995, 121, 626–629. [Google Scholar] [CrossRef]
- Etemad-Shahidi, A.; Bonakdar, L.; Jeng, D.-S. Estimation of scour depth around circular piers: Applications of model tree. J. Hydroinform. 2015, 17, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Ebtehaj, I.; Sattar, A.M.A.; Bonakdari, H.; Zaji, A.H. Prediction of scour depth around bridge piers using self-adaptive extreme learning machine. J. Hydroinform. 2017, 19, 207–224. [Google Scholar] [CrossRef]
- Sharafati, A.; Tafarojnoruz, A.; Yaseen, Z.M. New stochastic modeling strategy on the prediction enhancement of pier scour depth in cohesive bed materials. J. Hydroinform. 2020, 22, 457–472. [Google Scholar] [CrossRef]
- Mohamed, T.A.; Pillai, S.; Noor, M.J.M.M.; Ghazali, A.H.; Huat, B.K.; Yusuf, B. Validation of Some Bridge Pier Scour Formulae and Models Using Field Data. J. King Saud Univ. Eng. Sci. 2006, 19, 31–40. [Google Scholar] [CrossRef]
- Gazi, A.H.; Afzal, M.S. A new mathematical model to calculate the equilibrium scour depth around a pier. Acta Geophys. 2020, 68, 181–187. [Google Scholar] [CrossRef]
- Sheykholeslami, M.; Shafaee-Bajestan, M.; Kashefi Poor, M. Estimation of Scour Depth at Bridge Piers by Using FASTER Model. Irrig. Water Eng. 2010, 1, 57–68. [Google Scholar]
- Laursen, E.M.; Toch, A. Scour around Bridge Piers and Abutments, HR-30 and Iowa Highway Research Board Bulletin No. 4; Iowa Highway Research Board: Ames, IA, USA, 1956; Volume 4. [Google Scholar]
- Koopaei, K.B.; Valentine, E.M. Bridge Pier Scour in Self Formed Laboratory Channels; Technical Report; University of Glasgow: Glasgow, UK, 2003. [Google Scholar]
- Pandey, M.; Zakwan, M.; Sharma, P.K.; Ahmad, Z. Multiple linear regression and genetic algorithm approaches to predict temporal scour depth near circular pier in non-cohesive sediment. ISH J. Hydraul. Eng. 2020, 26, 96–103. [Google Scholar] [CrossRef]
- Gaudio, R.; Grimaldi, C.; Tafarojnoruz, A.; Calomino, F. Comparison of formulae for the prediction of scour depth at piers. In Proceedings of the First European IAHR Congress, Edinburgh, UK, 4–6 May 2010; Heriot-Watt University: Edinburgh, UK; pp. 4–6. [Google Scholar]
- Gaudio, R.; Tafarojnoruz, A.; De Bartolo, S. Sensitivity analysis of bridge pier scour depth predictive formulae. J. Hydroinform. 2013, 15, 939–951. [Google Scholar] [CrossRef]
- Akhlaghi, E.; Babarsad, M.S.; Derikvand, E.; Abedini, M. Assessment the Effects of Different Parameters to Rate Scour around Single Piers and Pile Groups: A Review. Arch. Comput. Methods Eng. 2020, 27, 183–197. [Google Scholar] [CrossRef]
- Melville, B.W. The Physics of Local Scour at Bridge Piers. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; The Japanese Geotechnical Society: Tokyo, Japan, 2008; pp. 28–40. [Google Scholar]
- Hancu, S. Sur Ie calcul des affouillements locaux dams la zone des piles de ponts. In Proceedings of the 14th IAHR Congress, Paris, France, 29 August–3 September 1971; IAHR: Paris, France, 1971; pp. 299–313. [Google Scholar]
- Breusers, H.N.C.; Nicollet, G.; Shen, H.W. Erosion locale autour des piles cylindriques. J. Hydraul. Res. 1977, 15, 211–252. [Google Scholar] [CrossRef]
- Jain, S.; Fischer, E. Scour around Circular Bridge Piers at High Froude Numbers; Final Report; US Department of Transportation, Federal Highway Administration: Washington, DC, USA, 1979.
- Jain, S.C. Maximum clear-water scour around circular piers. J. Hydraul. Div. 1981, 107, 611–626. [Google Scholar] [CrossRef]
- Khalfin, I.S. Local scour around ice-resistant structures caused by wave and current effect. In Proceedings of the Seventh International Conference on Port and Ocean Engineering under Arctic Conditions, Helsinki, Finland, 5–9 April 1983; pp. 992–1002. [Google Scholar]
- Melville, B.W.; Sutherland, A.J. Design Method for Local Scour at Bridge Piers. J. Hydraul. Eng. 1988, 114, 1210–1226. [Google Scholar] [CrossRef]
- Gao, D.; LilianPosada, G.; Nordin, C. Pier Scour Equations Used in China; Federal Highway Administration: Washington, DC, USA, 1993.
- Sheppard, D.M.; Renna, R. Bridge Scour Manual; Florida Department of Transportation: Tallahassee, FL, USA, 2005.
- Richardson, E.V.; Davis, S.R. Evaluating Scour at Bridges; No. FHWA-NHI-01-001; Federal Highway Administration: Washington, DC, USA, 2001.
- Henderson, F. Open Channel Flow; MacMillan Publishing Co.: New York, NY, USA, 1966. [Google Scholar]
- Van Rijn, L. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas; Aqua publications: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Hager, W.H.; Oliveto, G. Shields’ Entrainment Criterion in Bridge Hydraulics. J. Hydraul. Eng. 2002, 128, 538–542. [Google Scholar] [CrossRef]
- Arneson, L.A.; Zevenbergen, L.W.; Lagasse, P.F.; Clopper, P.E. Evaluating Scour at Bridges; Report No. FHWA-HIF-12-003; Federal Highway Administration: Washington, DC, USA, 2012.
- Qadar, A. The Vortex Scour Mechanism at Bridge Piers. Proc. Inst. Civ. Eng. 1981, 71, 739–757. [Google Scholar] [CrossRef]
- Van Wilson, K. Scour at Selected Bridge Sites in Mississippi; US Department of the Interior, US Geological Survey: Reston, VA, USA, 1995.
- Gao, D.; Xu, G. Research on Local Scour Mechanism of Piers and Revision of the Equations; Xian Highway Transport University: Xian, China, 1989. [Google Scholar]
- Hao, L.; Gao, D. Hydraulics on Bridge Engineering; People’s Traffic Press: Beijing, China, 1991. [Google Scholar]
- Melville, B.W.; Chiew, Y.M. Time Scale for Local Scour at Bridge Piers. J. Hydraul. Eng. 1999, 125, 59–65. [Google Scholar] [CrossRef]
- Akhtaruzzaman Sarker, M. Flow measurement around scoured bridge piers using Acoustic-Doppler Velocimeter (ADV). Flow Meas. Instrum. 1998, 9, 217–227. [Google Scholar] [CrossRef]
- Breusers, H.; Raudkivi, A. Scouring, Hydraulic Structures Design Manual; IAHR: Rotterdam, The Netherlands, 1990; Volume 143. [Google Scholar]
- Farzadkhoo, M.; Keshavarzi, A.; Hamidifar, H.; James, B. Flow and longitudinal dispersion in channel with partly rigid floodplain vegetation. Proc. Inst. Civ. Eng. Water Manag. 2019, 172. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Farzadkhoo, M.; Hamidifar, H. Longitudinal dispersion coefficient in compound open channel with rigid vegetation on flood plain. E3S Web Conf. 2018, 40, 02058. [Google Scholar] [CrossRef]
- Raeisi, N.; Ghomeshi, M. Effect of model scale in bridge piers scour experiments. Water Soil Sci. 2015, 25, 227–240. [Google Scholar]
- Tubaldi, E.; Macorini, L.; Izzuddin, B.A.; Manes, C.; Laio, F. A framework for probabilistic assessment of clear-water scour around bridge piers. Struct. Saf. 2017, 69, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, A.; Manfreda, S.; Tubaldi, E. The Science behind Scour at Bridge Foundations: A Review. Water 2020, 12, 374. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.A.; Clopper, P.E.; Zevenbergen, L.W.; Lagasse, P.F. Quantifying Uncertainty and Reliability in Bridge Scour Estimations. J. Hydraul. Eng. 2015, 141, 04015013. [Google Scholar] [CrossRef]
Authors | Symbol | Code | Equation | Description |
---|---|---|---|---|
Richardson and Davis [42] | VRAD | Vc-1 | ||
Shields (reported in [43]) | VSHI | Vc-2a Vc-2b | ||
Van Rijn [44] | VVAN | Vc-3 | ||
Hager and Oliveto [45] | VHAO | Vc-4 | ||
Hancu [34] | VHAN | Vc-5 | ||
Arneson et al. [46] | VARN | Vc-6 | is a correction factor equal to 11.17 for U.S. customary units and 6.19 for SI units | |
Zhang et al., (reported in [40]) | VZHA | Vc-7 |
Q (L/s) | H (mm) | b (mm) | V (m/s) | Fr | Re | yso (mm) | |
---|---|---|---|---|---|---|---|
Run 1 | 12.9 | 130 | 40 | 0.248 | 0.220 | 32250 | 61 |
Run 2 | 15.3 | 160 | 40 | 0.239 | 0.191 | 38250 | 56 |
Run 3 | 16.74 | 180 | 40 | 0.233 | 0.175 | 41850 | 51 |
Model | VRAD | VSHI-a | VSHI-b | VVAN | VHAO | VHAN | VARN | VZHA | |
---|---|---|---|---|---|---|---|---|---|
SSE | |||||||||
YHAN | 0.102 | 0.054 | 0.057 | 0.053 | 0.065 | 0.079 | 0.085 | 0.062 | |
YBRE | 0.091 | 0.087 | 0.088 | 0.087 | 0.089 | 0.090 | 0.091 | 0.088 | |
YJAF | 0.013 | 0.016 | 0.016 | 0.017 | 0.016 | 0.015 | 0.014 | 0.016 | |
YJAI | 0.013 | 0.017 | 0.016 | 0.017 | 0.016 | 0.015 | 0.014 | 0.016 | |
YKHA | 0.093 | 0.077 | 0.078 | 0.076 | 0.081 | 0.087 | 0.089 | 0.080 | |
YMAS | 0.036 | 0.017 | 0.018 | 0.016 | 0.021 | 0.027 | 0.029 | 0.020 | |
YGAO | 0.116 | 0.032 | 0.035 | 0.029 | 0.047 | 0.074 | 0.086 | 0.043 | |
YSGAO | 0.119 | 0.021 | 0.025 | 0.017 | 0.038 | 0.070 | 0.083 | 0.034 | |
YMEL | 0.017 | 0.065 | 0.057 | 0.068 | 0.040 | 0.023 | 0.019 | 0.046 | |
YFDOT | 0.079 | 0.053 | 0.054 | 0.052 | 0.057 | 0.064 | 0.068 | 0.056 | |
U | |||||||||
YHAN | 1.022 | 0.845 | 0.859 | 0.838 | 0.895 | 0.952 | 0.974 | 0.881 | |
YBRE | 0.999 | 0.985 | 0.986 | 0.984 | 0.990 | 0.996 | 0.998 | 0.989 | |
YJAF | 0.349 | 0.470 | 0.462 | 0.473 | 0.441 | 0.404 | 0.388 | 0.449 | |
YJAI | 0.356 | 0.474 | 0.466 | 0.478 | 0.446 | 0.410 | 0.394 | 0.454 | |
YKHA | 1.001 | 0.941 | 0.948 | 0.939 | 0.962 | 0.982 | 0.990 | 0.956 | |
YMAS | 0.732 | 0.506 | 0.532 | 0.492 | 0.590 | 0.663 | 0.687 | 0.569 | |
YGAO | 1.067 | 0.529 | 0.602 | 0.487 | 0.750 | 0.915 | 0.968 | 0.696 | |
YSGAO | 1.067 | 0.516 | 0.592 | 0.473 | 0.744 | 0.913 | 0.967 | 0.689 | |
YMEL | 0.338 | 0.886 | 0.848 | 0.904 | 0.751 | 0.588 | 0.517 | 0.789 | |
YFDOT | 0.951 | 0.840 | 0.845 | 0.838 | 0.861 | 0.895 | 0.910 | 0.855 | |
NNSE | |||||||||
YHAN | 0.145 | 0.705 | 0.644 | 0.675 | 0.475 | 0.275 | 0.218 | 0.554 | |
YBRE | 0.164 | 0.185 | 0.183 | 0.186 | 0.176 | 0.168 | 0.166 | 0.179 | |
YJAF | 0.071 | 0.100 | 0.098 | 0.102 | 0.091 | 0.082 | 0.079 | 0.094 | |
YJAI | 0.072 | 0.102 | 0.099 | 0.104 | 0.093 | 0.083 | 0.080 | 0.095 | |
YKHA | 0.167 | 0.314 | 0.291 | 0.316 | 0.248 | 0.200 | 0.184 | 0.268 | |
YMAS | 0.424 | 0.106 | 0.117 | 0.098 | 0.154 | 0.238 | 0.277 | 0.140 | |
YGAO | 0.101 | 0.127 | 0.180 | 0.103 | 0.465 | 0.391 | 0.229 | 0.349 | |
YSGAO | 0.101 | 0.121 | 0.172 | 0.099 | 0.456 | 0.402 | 0.232 | 0.335 | |
YMEL | 0.035 | 0.011 | 0.012 | 0.010 | 0.015 | 0.021 | 0.025 | 0.013 | |
YFDOT | 0.285 | 0.605 | 0.596 | 0.596 | 0.557 | 0.451 | 0.391 | 0.582 | |
NRMSE | |||||||||
YHAN | 2.042 | 1.493 | 1.529 | 1.468 | 1.627 | 1.796 | 1.863 | 1.592 | |
YBRE | 1.934 | 1.890 | 1.895 | 1.887 | 1.907 | 1.924 | 1.930 | 1.903 | |
YJAF | 0.735 | 0.820 | 0.814 | 0.827 | 0.799 | 0.773 | 0.766 | 0.803 | |
YJAI | 0.738 | 0.824 | 0.818 | 0.831 | 0.803 | 0.777 | 0.769 | 0.807 | |
YKHA | 1.954 | 1.779 | 1.795 | 1.769 | 1.823 | 1.890 | 1.908 | 1.807 | |
YMAS | 1.207 | 0.831 | 0.856 | 0.802 | 0.928 | 1.050 | 1.092 | 0.906 | |
YGAO | 2.184 | 1.149 | 1.204 | 1.090 | 1.393 | 1.747 | 1.876 | 1.334 | |
YSGAO | 2.206 | 0.929 | 1.004 | 0.846 | 1.250 | 1.693 | 1.847 | 1.178 | |
YMEL | 0.837 | 1.638 | 1.528 | 1.675 | 1.277 | 0.981 | 0.880 | 1.379 | |
YFDOT | 1.803 | 1.469 | 1.483 | 1.460 | 1.526 | 1.621 | 1.664 | 1.510 |
Statistical Indicators | Hybrid Model | |||
---|---|---|---|---|
SSE | YJAF-VRAD (0.013) | YJAI-VRAD (0.013) | YJAF-VARN (0.014) | YJAI-VARN (0.014) |
U | YMEL-VRAD (0.338) | YJAF-VRAD (0.349) | YJAI-VRAD (0.356) | YJAF-VARN (0.388) |
NNSE | YHAN-VVAN (0.675) | YHAN-VSHI-a (0.705) | YHAN-VSHI-b (0.644) | YFDOT-VSHI-a (0.605) |
NRMSE | YJAF-VRAD (0.735) | YJAI-VRAD (0.738) | YJAF-VARN (0.766) | YJAI-VARN (0.769) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamidifar, H.; Zanganeh-Inaloo, F.; Carnacina, I. Hybrid Scour Depth Prediction Equations for Reliable Design of Bridge Piers. Water 2021, 13, 2019. https://doi.org/10.3390/w13152019
Hamidifar H, Zanganeh-Inaloo F, Carnacina I. Hybrid Scour Depth Prediction Equations for Reliable Design of Bridge Piers. Water. 2021; 13(15):2019. https://doi.org/10.3390/w13152019
Chicago/Turabian StyleHamidifar, Hossein, Faezeh Zanganeh-Inaloo, and Iacopo Carnacina. 2021. "Hybrid Scour Depth Prediction Equations for Reliable Design of Bridge Piers" Water 13, no. 15: 2019. https://doi.org/10.3390/w13152019
APA StyleHamidifar, H., Zanganeh-Inaloo, F., & Carnacina, I. (2021). Hybrid Scour Depth Prediction Equations for Reliable Design of Bridge Piers. Water, 13(15), 2019. https://doi.org/10.3390/w13152019