A Spatially Explicit Crop Yield Model to Simulate Agricultural Productivity for Past Societies under Changing Environmental Conditions
Abstract
:1. Introduction
2. Study Area
3. Modelling Ancient Crop Yields in a Changing Environment
3.1. The Adapted Aquacrop Agronomic Model
3.1.1. Runoff and Re-Infiltration
3.1.2. Speeding Up Calculations on a Supercomputer
3.2. Calibration of the AquaCrop Model in the Environment of Present-Day Sagalassos
3.3. Application of the Calibrated Model to Reconstruct Past Crop Yields in Gravgaz
3.3.1. Input Data
3.3.2. Modelling Marsh Height and Extent
4. Results and Discussion
4.1. AquaCrop Calibration of Present-Day Soil Productivity
4.2. Modeling Ancient Crop Yield: Spatial and Temporal Patterns of Crop Yield Simulations
4.3. Changes in Catchment Hydrology and Land Suitability
4.4. The Value of an Adjusted AquaCrop Model in the Context of Ancient Crop Yield Simulations
4.5. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. The Study Area of Sagalassos: Temperature and Precipitation
Appendix A.2. Calibration of the AquaCrop Model in the Environment of Present-Day Sagalassos
Appendix A.2.1. Collecting Crop Yield and Plot Data: Field Work Details
Appendix A.2.2. Soil Fertility Stress
Comp. 1—Explained Var: 0.23 | Comp. 2—Explained Var: 0.15 | Comp. 3—Explained Var: 0.13 | Comp. 4—Explained Var: 0.11 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Positive loading | Negative loading | Positive loading | Negative loading | Positive loading | Negative loading | Positive loading | Negative loading | ||||||||
Clay | 0.37 | pH | −0.52 | Stoniness | 0.47 | ST | −0.55 | Curvature | 0.47 | Hydro | −0.45 | z | 0.59 | EC | −0.49 |
Micro | 0.22 | Slope | −0.39 | Slope | 0.30 | Hydro | −0.34 | Bases | 0.31 | Micro | −0.39 | Micro | 0.36 | P | −0.25 |
Hydro | 0.06 | P | −0.36 | Micro | 0.21 | EC | −0.27 | EC | 0.22 | P | −0.33 | ST | 0.24 | Hydro | −0.24 |
z | −0.29 | Curvature | 0.21 | Bases | −0.24 | z | 0.17 | Stoniness | −0.23 | Bases | 0.15 | Stoniness | −0.22 | ||
EC | −0.24 | P | 0.01 | Clay | −0.17 | Clay | 0.17 | ST | −0.21 | pH | 0.10 | Curvature | −0.13 | ||
Stoniness | −0.20 | z | 0.00 | pH | −0.16 | Slope | −0.15 | Slope | 0.06 | Clay | −0.05 | ||||
Bases | −0.20 | pH | −0.13 | ||||||||||||
ST | −0.16 | ||||||||||||||
Curvature | −0.15 |
Appendix A.2.3. Implementation of Trees and Shrubs in AquaCrop
Appendix A.3. Paleoclimate Time Series
References
- Zeder, M.A. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc. Natl. Acad. Sci. USA 2008, 105, 11597–11604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudie, A. The Human Impact on the Natural Environment; Blackwell Publishing: Hoboken, NJ, USA, 2006. [Google Scholar]
- Notebaert, B.; Verstraeten, G. Sensitivity of West and Central European river systems to environmental changes during the Holocene: A review. Earth Sci. Rev. 2010, 103, 163–182. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [Green Version]
- Dearing, J.A.; Jones, R.T. Coupling temporal and spatial dimensions of global sediment flux through lake and marine sediment records. Glob. Planet. Chang. 2003, 39, 147–168. [Google Scholar] [CrossRef]
- Dotterweich, M. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis. Geomorphology 2013, 201, 1–34. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Rounsevell, M.D.A. The crop productivity–erosion relationship: An analysis based on experimental work. Catena 2004, 57, 55–76. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Ewert, F.; Rounsevell, M.; Jones, R. Variability in regional wheat yields as a function of climate, soil and economic variables: Assessing the risk of confounding. Agric. Ecosyst. Environ. 2005, 110, 195–209. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Gómez, J.; Infante-Amate, J.; de Molina, M.G.; Vanderlinden, K.; Guzmán, G.; Laguna, A.M.; Giraldez, J. Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene 2017, 17, 13–29. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Romagosa, I.; Molist, M. FOCUS: Estimated Wheat Yields During the Emergence of Agriculture Based on the Carbon Isotope Discrimination of Grains: Evidence from a 10th Millennium BP Site on the Euphrates. J. Archaeol. Sci. 2001, 28, 341–350. [Google Scholar] [CrossRef]
- Aguilera, M.; Araus, J.L.; Voltas, J.; Rodríguez-Ariza, M.O.; Molina, F.; Rovira, N.; Buxo, R.; Ferrio, J.R. Stable carbon and nitrogen isotopes and quality traits of fossil cereal grains provide clues on sustainability at the beginnings of Mediterranean agriculture. Rapid Commun. Mass Spectrom. 2008, 22, 1653–1663. [Google Scholar] [CrossRef]
- Riehl, S.; Pustovoytov, K.E.; Weippert, H.; Klett, S.; Hole, F. Drought stress variability in ancient Near Eastern agricultural systems evidenced by 13C in barley grain. Proc. Natl. Acad. Sci. USA 2014, 111, 12348–12353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dinter, M.; Kooistra, L.I.; Dütting, M.K.; Rijn, P.V.; Cavallo, C. Could the local population of the Lower Rhine delta supply the Roman army? Part 2: Modelling the carrying capacity using archaeological, palaeo-ecological and geomorphological data. J. Archaeol. Low Ctries. 2014, 5, 5–50. [Google Scholar]
- Dermody, B.J.; Van Beek, R.P.H.; Meeks, E.; Goldewijk, K.K.; Scheidel, W.; Van Der Velde, Y.; Bierkens, M.F.P.; Wassen, M.; Dekker, S.C. A virtual water network of the Roman world. Hydrol. Earth Syst. Sci. 2014, 18, 5025–5040. [Google Scholar] [CrossRef] [Green Version]
- van Beek, L.P.H.; Bierkens, M.F.P. The Global Hydrological Model PCR-GLOBWB: Conceptualization, Parameterization and Verification; Department of Physical Geography—Utrecht University: Utrecht, The Netherlands, 2008. [Google Scholar]
- De Brue, H.; Verstraeten, G. Impact of the spatial and thematic resolution of Holocene anthropogenic land-cover scenarios on modeled soil erosion and sediment delivery rates. Holocene 2013, 24, 67–77. [Google Scholar] [CrossRef]
- Williams, J.R. The Erosion-Productivity Impact Calculator (EPIC) Model: A Case History. Philos. Trans. R. Soc. B Biol. Sci. 1990, 329, 421–428. [Google Scholar] [CrossRef]
- Murtha, T.M. Land and Labor: Classic Maya Terraced Agriculture at Caracol, Belize. Ph.D. Thesis, The Pennsylvania State University, Philadelphia, PA, USA, 2002. [Google Scholar] [CrossRef]
- Altaweel, M. Investigating agricultural sustainability and strategies in northern Mesopotamia: Results produced using a socio-ecological modeling approach. J. Archaeol. Sci. 2008, 35, 821–835. [Google Scholar] [CrossRef]
- Kohler, T.; Kresl, J.; Van West, C.; Carr, E.; Wilshusen, R.H. Be There Then: A Modeling Approach to Settlement Determinants and Spatial Efficiency Among Late Ancentral Pueblo Populations of the Mesa Verde Region, U.S. Southwest. In Dynamics in Human and Primate Societies: Agent-Based Modeling of Social and Spatial Processes; Kohler, T., Gumeran, G., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 145–178. [Google Scholar]
- Van West, C. Modeling Productivity in Southwestern Colorado: AGIS Approac; Washington State University: Washington, DC, USA, 1994. [Google Scholar]
- Van Loo, M.; Dusar, B.; Verstraeten, G.; Renssen, H.; Notebaert, B.; D’Haen, K.; Bakker, J. Human induced soil erosion and the implications on crop yield in a small mountainous Mediterranean catchment (SW-Turkey). Catena 2017, 149, 491–504. [Google Scholar] [CrossRef] [Green Version]
- Poblome, J. The Economy of the Roman World as a Complex Adaptive System. Testing the Case in Second to Fifth Century CE Sagalassos. In Structure and Performance in the Roman Economy Models, Methods and Case Studies; Erdkamp, P., Verboven, K., Eds.; Latomus: Brussels, Belgium, 2015; Volume 350. [Google Scholar]
- D’Haen, K. Fingerprinting Late Holocene Sediment Fluxes in an Eastern Mediterranean Mountain Catchment. Ph.D. Thesis, KULeuven, Leuven, Belgium, 2012. [Google Scholar]
- Bakker, J. Late Holocene Vegetation Dynamics in A Mountainous Environment in The Territory of Sagalassos, Southwest Turkey. Ph.D. Thesis, KULeuven, Leuven, Belgium, 2012. [Google Scholar]
- De Cupere, B.; Frémondeau, D.; Kaptijn, E.; Marinova, E.; Poblome, J.; Vandam, R.; Van Neer, W. Subsistence economy and land use strategies in the Burdur province (SW Anatolia) from prehistory to the Byzantine period. Quat. Int. 2017, 436, 4–17. [Google Scholar] [CrossRef]
- Paulissen, E.; Poesen, J.; Govers, G.; De Ploey, J. The physical environment at Sagalassos (Western Taurus, Turkey). A reconnaissance survey. In Sagalassos II. Report on the Survey and Excavation Campaigns of; Waelkens, M., Poblome, J., Eds.; Leuven Univeristy Press: Leuven, Belgium, 1993. [Google Scholar]
- Waelkens, M.; Paulissen, E.; Vermoere, M.; Degryse, P.; Celis, D.; Schroyen, K.; De Cupere, B.; Librecht, I.; Nackaerts, K.; Vanhaverbeke, H.; et al. Man and environment in the territory of Sagalassos, a classical city in SW Turkey. Quat. Sci. Rev. 1999, 18, 697–709. [Google Scholar] [CrossRef]
- Six, S.; Van Thuyne, T.; Lambrechts, J.; Vermoere, M.; De Laet, V.; Waelkens, M. Late Holocene Sediment Characteristics and Sediment Accumulation in the Marsh of Gravgaz: Evidence for Abrupt Environmental Changes. Sagalassos VI. Geo- and Bio-Archaeology at Sagalassos and in Its Territory; Leuven Univeristy Press: Leuven, Belgium, 2008. [Google Scholar]
- Foster, T. AquaCropOS—Reference Manual, Version 5.0a; University of Manchester: Manchester, UK, 2016. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Aquacrop-The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426. [Google Scholar] [CrossRef] [Green Version]
- Lorite, I.J.; García-vila, M.; Santos, C.; Ruiz-ramos, M.; Fereres, E. AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Comput. Electron. Agric. 2013, 96, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Masi, A.; Sadori, L.; Balossi, F.; Baneschi, I.; Zanchetta, G. Stable carbon isotope analysis as a crop management indicator at Arslantepe ( Malatya, Turkey ) during the Late Chalcolithic and Early Bronze Age. Veget. Hist. Archaeobot 2014, 23, 751–760. [Google Scholar] [CrossRef]
- Schwanghart, W.; Kuhn, N.J. Environmental Modelling & Software TopoToolbox: A set of Matlab functions for topographic analysis. Environ. Model. Softw. 2010, 25, 770–781. [Google Scholar] [CrossRef]
- Bonell, M.; Williams, J. Infiltration and redistribution of overland flow and sediment on a low relief landscape of semi-arid, tropical Queensland. IAHS Publ. 1987, 167, 199–211. [Google Scholar]
- Puigdefabregas, J.; del Barrio, G.; Boer, M.M.; Gutiérrez, L.; Solé, A. Differential responses of hillslope and channel elements to rainfall events in a semi-arid area. Geomorphology 1998, 23, 337–351. [Google Scholar] [CrossRef]
- Vanuytrecht, E. Crop Responses To Climate Change. Ph.D. Thesis, KULeuven, Leuven, Belgium, 2013. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Shao, J.X.; Tu, D. The Jackknife and Bootstrap; Springer: New York, NY, USA, 1995. [Google Scholar]
- Werner, J.; Woodward, D.; Nielsen, R.; Dobos, R.; Hjelmfelt, A.; Hoeft, C.C. Chapter 7 Hydrologic Soil Groups. In Part 630 Hydrology National Engineering Handbook; USDA Natural Resource Conservation Service (NRCS): Washington, DC, USA, 2009. [Google Scholar]
- D’Haen, K.; Dusar, B.; Verstraeten, G.; Degryse, P.; De Brue, H. A sediment fingerprinting approach to understand the geomorphic coupling in an eastern Mediterranean mountainous river catchment. Geomorphology 2013, 197, 64–75. [Google Scholar] [CrossRef]
- Dusar, B. Late Holocene Sediment Dynamics in a Mediterranean Mountain Environment. Ph.D. Thesis, KULeuven: Leuven, Belgium, 2011. [Google Scholar]
- Saxton, K.; Rawls, W. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Nachtergaele, J.; Poesen, J.; Steegen, A.; Takken, I.; Beuselinck, L.; Vandekerckhove, L.; Govers, G. The value of a physically based model versus an empirical approach in the prediction of ephemeral gully erosion for loess-derived soils. Geomorphology 2001, 40, 237–252. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E.; Folly, A.J.V. The European Soil Erosion Model (EUROSEM): Documentation and User Guide; Cranfield University: Bedford, UK, 1998. [Google Scholar]
- Kalyanapu, A.J.; Burian, S.J.; Mcpherson, T.N. Effect of land use-based surface roughness on hydrologic model output. J. Spat. Hydrol. 2009, 9, 1–30. [Google Scholar]
- Renssen, H.; Seppä, H.; Heiri, O.; Roche, D.M.; Goosse, H.; Fichefet, T. The spatial and temporal complexity of the Holocene thermal maximum. Nat. Geosci. 2009, 2, 411–414. [Google Scholar] [CrossRef]
- Brouwer, C.; Prins, K.; Kay, M.; Heibloem, M. Irrigation Water Management: Irrigation Methods—Training Manual No 5; Food and Agriculture Organization of the United Nations: Roma, Italy, 1990.
- Shuttleworth, W.J. Putting the ‘vap’ into evaporation Putting the ‘vap’ into evaporation. Hydrol. Earth Syst. Sci. 2007, 11, 210–244. [Google Scholar] [CrossRef] [Green Version]
- Six, S. Holocene Geomorphological Evolution of the Territory of Sagalassos—Contribution to the Palaeo-Environmental Reconstruction of Southwest Turkey. Ph.D. Thesis, KULeuven, Leuven, Belgium, 2004. [Google Scholar]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. Aquacrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Opolot, E.; Yu, Y.Y.; Finke, P. Modeling soil genesis at pedon and landscape scales: Achievements and problems. Quat. Int. 2014, 376, 1–13. [Google Scholar] [CrossRef]
- Vereecken, H.; Schnepf, A.; Hopmans, J.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.; Amelung, W.; Aitkenhead, M.; et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 2016, 15, vzj2015.09.0131. [Google Scholar] [CrossRef] [Green Version]
- Van der Meij, W.M.; Temme, A.J.A.M.; Wallinga, J.; Sommer, M. Modeling soil and landscape evolution—The effect of rainfall and land-use change on soil and landscape patterns. Soil 2020, 6, 337–358. [Google Scholar] [CrossRef]
- Van Andel, T.H.; Runnels, C.N.; Pope, K.O. Five thousand years of land use and abuse in the Southern Argolid, Greece. Hesperia 1986, 55, 103–128. [Google Scholar] [CrossRef]
- Bintliff, J. Time, process and catastrophism in the study of Mediterranean alluvial history: A review. World Archaeol. 2002, 33, 417–435. [Google Scholar] [CrossRef]
- Bowman, A.; Wilson, A. (Eds.) The Roman Agricultural Economy; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- White, K.D. Fallowing, Crop Rotation, and Crop Yields in Roman Times. Agric. Hist. 1970, 44, 281–290. [Google Scholar]
- Halstead, P. Traditional and ancient rural economy in Mediterranean Europe: Plus ça change? J. Hell. Stud. 1987, 107, 77–87. [Google Scholar] [CrossRef]
- Bogaard, A.; Fraser, R.; Heaton, T.H.E.; Wallace, M.; Vaiglova, P.; Charles, M.; Jones, G.; Evershed, R.P.; Styring, A.K.; Andersen, N.H.; et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA 2013, 110, 12589–12594. [Google Scholar] [CrossRef] [Green Version]
- Dark, P.; Gent, H. Pests and Diseases of Prehistoric Crops: A Yield “Honeymoon” for Early Grain Crops in Europe? Oxf. J. Archeol. 2001, 20, 59–78. [Google Scholar] [CrossRef]
- Currie, T.; Bogaard, A.; Cesaretti, R.; Edwards, N.; Francois, P.; Holden, P.; Hoyer, D.; Korotayev, A.; Manning, J.; Garcia, J.C.M.; et al. Agricultural productivity in past societies: Toward an empirically informed model for testing cultural evolutionary hypotheses. CDN 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Peeters, I.; Rommens, T.; Verstraeten, G.; Govers, G.; Van Rompaey, A.; Poesen, J.; Van Oost, K. Reconstructing ancient topography through erosion modelling. Geomorphology 2006, 78, 250–264. [Google Scholar] [CrossRef]
- Grieser, J.; Gommes, R.; Bernardi, M. New LocClim—the Local Climate Estimator of FAO. Geophys. Res. Abstr. 2006, 8, 1607–7962. [Google Scholar]
- Donners, K.; Waelkens, M.; Celis, D.; Nackaerts, K.; Deckers, J.A.; Vermoere, M.; Vanhaverbeke, H. Towards a Land Evaluation of the Territory of Ancient Sagalassos. Sagalassos V. Report on the Survey and Excavation Campaigns of 1996 and 1997; Leuven University Press: Leuven, Belgium, 2000; pp. 723–756. [Google Scholar]
- Van Gaelen, H.; Tsegay, A.; Delbecque, N.; Shrestha, N.; García, M.; Fajardo, H.; Miranda, R.; Vanuytrecht, E.; Abrha, B.; Diels, J.; et al. A semi-quantitative approach for modelling crop response to soil fertility: Evaluation of the AquaCrop procedure. J. Agric. Sci. 2015, 153, 1218–1233. [Google Scholar] [CrossRef]
- Fereres, E.; Goldhamer, D.A.; Sadras, V.O. Yield response to water of fruit trees and vines: Guidelines. In FAO Irrigation and Drainage Paper 66, Crop Yield Response to Water; Steduto, P., Fereres, E., Raes, D., Hsiao, T.C., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Canadell, J.; Jackson, R.; Ehleringer, J.; Mooney, H.A.; Sala, O.E.; Schulze, E.-D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–695. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.D.; Carter Timothy, R.; Jones, P.D.; Hulme, M.; New, M. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Cent. Clim. Chang. Res. 2003. [Google Scholar] [CrossRef]
- Bouwer, L.M.; Aerts, J.C.J.H.; van de Coterlet, G.M.; van de Giesen, N.; Gieske, A.; Mannaerts, C. Evaluating downscaling methods for preparing global circulation model (GCM) data for hydrological impact modelling. In Climate Change in Contrasting river Basins: Adaptation Strategies for Water, Food and Environment; CABI: Wallingford, UK, 2004; pp. 25–47. [Google Scholar] [CrossRef]
- Ward, P.J.; Aerts, J.C.J.H.; de Moel, H.; Renssen, H. Verification of a coupled climate-hydrological model against Holocene palaeohydrological records. Glob. Planet. Chang. 2007, 57, 283–300. [Google Scholar] [CrossRef]
- Tank, A.M.G.K.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- Wilks, D.S. Maximum likelihood estimation for the gamma distribution using data containing zeros. J. Clim. 1990, 3, 1495–1501. [Google Scholar] [CrossRef] [Green Version]
- Husak, G.J.; Michaelsen, J.; Funk, C. Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. Int. J. Climatol. 2007, 27, 935–944. [Google Scholar] [CrossRef]
Land Cover Category | Manning’s n | Reference |
---|---|---|
Undegraded | 0.4 | [47] |
Degraded (Bare soil) | 0.03 | [45] |
Degraded (Crop development) | 0.03–0.3 | [46] |
Crop Parameter | Winter Wheat (This Study) | Winter Wheat | Winter Wheat [31] | ||
---|---|---|---|---|---|
Calibration Ranges (Min–Max) | Amount of Linearly Spaced Calibration Steps | Optimal Value | Optimal Value | Optimal Value | |
Tbase (°C) | 6–12 | 7 | 12 | 2 | 0 |
GDD min (°C day−1) | 0–8 | 9 | 4 | 8 | 14 |
CGC (fraction GDD−1) | 0.001–0.07 | 7 | 0.04 | 0.08 | 0.05 |
WP (g m−2) | 13–22 | 10 | 22 | 18.5 | 15 |
Single AQ Run | Sequential AQ Runs Gravgaz Catchment (28,000 Cells) | Spatial Parallelism Gravgaz Catchment (28,000 Cells) | Time Parallelism Gravgaz Catchment (28,000 Cells) | |||
---|---|---|---|---|---|---|
20 cores | 100 cores | 500 cores | 200 cores | |||
1 year | 0.001 | 38.89 | 1.94 | 0.39 | 0.08 | 38.89 |
200 years | 0.278 | 7777.78 | 388.89 | 77.78 | 15.56 | 38.89 |
4000 years | 5.556 | 155,555.56 | 7777.78 | 155.56 | 311.11 | 777.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Loo, M.; Verstraeten, G. A Spatially Explicit Crop Yield Model to Simulate Agricultural Productivity for Past Societies under Changing Environmental Conditions. Water 2021, 13, 2023. https://doi.org/10.3390/w13152023
Van Loo M, Verstraeten G. A Spatially Explicit Crop Yield Model to Simulate Agricultural Productivity for Past Societies under Changing Environmental Conditions. Water. 2021; 13(15):2023. https://doi.org/10.3390/w13152023
Chicago/Turabian StyleVan Loo, Maarten, and Gert Verstraeten. 2021. "A Spatially Explicit Crop Yield Model to Simulate Agricultural Productivity for Past Societies under Changing Environmental Conditions" Water 13, no. 15: 2023. https://doi.org/10.3390/w13152023
APA StyleVan Loo, M., & Verstraeten, G. (2021). A Spatially Explicit Crop Yield Model to Simulate Agricultural Productivity for Past Societies under Changing Environmental Conditions. Water, 13(15), 2023. https://doi.org/10.3390/w13152023