Evaluation of Evapotranspiration in Brazilian Cerrado Biome Simulated with the SWAT Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Modelling
2.3. Model Data Inputs
2.4. Stream Flow Calibration
2.5. Model Performance Evaluation
3. Results and Discussion
3.1. Model Calibration Strategies and Validation
3.2. Actual Evapotranspiration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brutsaert, W. Hydrology–An Introduction; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Morton, F.I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol. 1983, 66, 1–76. [Google Scholar] [CrossRef]
- Carvalho, T.; Reis, D.S., Jr. Avaliação da Influência dos Dados de Evapotranspiração Potencial no Desempenho de Modelos Hidrológicos em Bacias do Semiárido Cearense. In Proceedings of the IX Northeast Water Resources Symposium, Brazil, November 2008; Available online: https://scholar.google.com.br/citations?view_op=view_citation&hl=pt-BR&user=6K4NyGwAAAAJ&citation_for_view=6K4NyGwAAAAJ:3fE2CSJIrl8C (accessed on 23 July 2021).
- Bonumá, N.B.; Rossi, C.G.; Arnold, J.G.; Reichert, J.M.; Paiva, E.M.C.D. Hydrology evaluation of the Soil and Water Assessment Tool considering measurement uncertainty for a small watershed in Southern Brazil. Appl. Eng. Agric. 2013, 29, 189–200. [Google Scholar] [CrossRef]
- Amatya, D.M.; Irmak, S.; Gowda, P.; Sun, G.; Nettles, J.E.; Douglas-Mankin, K.R. Ecosystem evapotranspiration: Challenges in measurements, estimates, and modeling. Trans. ASABE 2016, 59, 555–560. [Google Scholar] [CrossRef]
- Calder, I.R.; Harding, R.J.; Rosier, P.T.W. An Objective Assessment of Soil- Moisture Deficit Models. J. Hydrol. 1983, 60, 329–355. [Google Scholar] [CrossRef]
- Zhang, L.; Walker, G.R.; Dawes, W. Predicting the effect of vegetation changes on catchment average water balance. In Cooperative Research Centre for Catchment Hydrology; CSIRO Land and Water, 1999; Available online: https://ewater.org.au/archive/crcch/archive/pubs/pdfs/technical199912.pdf (accessed on 23 July 2021).
- Pereira, D.D.R.; Martinez, M.A.; Pruski, F.F.; Silva, D.D. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests. J. Hydrol. Reg. Stud. 2016, 7, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, J.W. Getting the Right Answers for the Right Reasons: Linking Measurements, Analyses, and Models to Advance the Science of Hydrology. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Klemes, V. Dilettantism in Hydrology: Transition or Destiny? Water Resour. Res. 1986, 22, 177S–188S. [Google Scholar] [CrossRef]
- Beven, K.J. Prophecy, Reality and Uncertainty in Distributed Hydrological Modelling. Adv. Water Resour. 1993, 16, 41–51. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. In Symposium of the Society for Experimental Biology; XIX, Swansea. The State and Movement of Water in Living Organisms. New York; Cambridge University Press: Cambridge, UK, 1965; pp. 205–234. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Hargreaves, G.L.; Riley, J.P. Agricultural benefits for Senegal River Basin. J. Irrig. Drain. Eng. 1985, 111, 113–124. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Garbossa, L.H.P.; Vasconcelos, L.R.C.; Lapa, K.R.; Blainski, E.; Pinheiro, A. The use and results of the Soil and Water Assessment Tool in Brazil: A review from 1999 until 2010. In Proceedings of the 2011 International SWAT Conference & Workshops, Toledo, Spain, 15–17 June 2011. [Google Scholar]
- Bressiani, D.; Gassman, P.W.; Fernandes, J.G.; Garbossa, L.H.P.; Srinivasan, R.; Bonumá, N.B.; Mendiondo, E.M. A review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. Int. J. Agric. Biol. Eng. 2015, 8, 9–35. [Google Scholar] [CrossRef]
- Strauch, M.; Volk, M. SWAT plant growth modification for improved modeling of perennial vegetation in the tropics. Ecol. Model. 2013, 269, 98–112. [Google Scholar] [CrossRef]
- Melo Neto, J.O. Análise de Sensibilidade Escalar do Modelo Hidrológico SWAT. Master’s Thesis, Federal University of Lavras, Lavras, Brazil, 2012. [Google Scholar]
- Castro, K.B. Avaliação do Modelo SWAT na Simulação da Vazão em Bacia Agrícola do Cerrado Intensamente Monitorada. Master’s Thesis, University of Brasília, Brasília, Brazil, 2013. [Google Scholar]
- Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Andréassian, V.; Anctil, F.; Loumagne, C. Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 2005, 303, 290–306. [Google Scholar] [CrossRef]
- Kannan, N.; Santhi, C.; Williams, J.R.; Arnold, J.G. Development of a continuous soil moisture accounting procedure for curve number methodology and its behaviour with different evapotranspiration methods. Hydrol. Process. Int. J. 2008, 22, 2114–2121. [Google Scholar] [CrossRef]
- Arroio Junior, P.P. Aprimoramento das Rotinas e Parâmetros dos Processos Hidrológicos do Modelo Computacional Soil and Water Assessment Tool-SWAT. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2016. [Google Scholar]
- Maia, J.M.F.; Baptista, G.M.M. Clima. In Águas Emendadas; Fonseca, F.O., Ed.; Secretaria of Urban Development and Environment: Brasília, Brazil, 2008. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool-Theoretical Documentation Version 2005; Blackland Research Center, Texas Agricultural Experiment Station: Temple, TX, USA, 2005; p. 541. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool-Theoretical Documentation Version 2009; Blackland Research Center, Texas Agricultural Experiment Station: Temple, TX, USA, 2011; p. 654. [Google Scholar]
- Ritchie, J.T. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef] [Green Version]
- Brutsaert, W.; Stricker, H. An Advective-aridity Approach to Estimate Actual Regional Evaporation. Water Resour. Res. 1979, 15, 443–450. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Dyke, P.T. A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE 1984, 27, 129–144. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Gassman, P.W.; Williams, J.R.; Benson, V.W.; Izaurralde, R.C.; Hauck, L.M.; Jones, C.A.; Atwood, J.D.; Kiniry, J.R.; Flowers, J.D. Historical Development and Applications of the EPIC and APEX Models. In Proceedings of the 2004 American Society of Agricultural and Biological Engineers (ASAE) Annual Meeting, Ottawa, ON, Canada, 1–4 August 2004. [Google Scholar] [CrossRef] [Green Version]
- Nunes, G. Aplicação do Modelo SWAT no Estudo Hidrológico e de Qualidade de Água da Bacia Hidrográfica do Lago Paranoá-DF. Master’s Thesis, University of Brasília, Brasília, Brazil, 2016. [Google Scholar]
- Reatto, A.; Martins, E.S.; Cardoso, E.A.; Spera, S.T.; Carvalho, O.A.C.J.; Silva, A.V.E.; Farias, M.F.R. Levantamento de Reconhecimento de Solos de Alta Intensidade do Alto Curso do Rio Descoberto, DF/GO, Escala 1:100000; Research and Development Bulletin: Distrito Federal, Brazil, 2004. [Google Scholar]
- Távora, B.E. Zona Ripária de Cerrado: Processos Hidrossedimentológicos. Ph.D. Thesis, University of Brasília, Brasília, Brazil, 2017. [Google Scholar]
- Sarmento, L. Análise de Incertezas e Avaliação dos Fatores Influentes no Desempenho de Modelos de Simulação de Bacias Hidrográficas. Ph.D. Thesis, University of Brasília, Brasília, Brazil, 2010. [Google Scholar]
- Ferrigo, S.; Minoti, R.T.; Koide, S. Utilização do modelo SWAT (Soil andWater Assessment Tool) na estimativa de produção de sedimentos decorrentes de diferentes cenários de uso do solo na bacia do córrego Capão Comprido no Distrito Federal. In Proceedings of the XIX Brazilian Symposium on Water Resources, Maceió, Brazil, November 2011; Available online: https://www.researchgate.net/publication/260422891_AVALIACAO_DA_UTILIZACAO_DE_DIFERENTES_METODOS_NA_CALIBRACAO_AUTOMATICA_DO_MODELO_SWAT (accessed on 23 July 2021).
- Ferrigo, S.; Minoti, R.T.; Koide, S. Análise do modelo SWAT na simulação de produção de sedimentos quando calibrado unicamente para a vazão em uma pequena bacia hidrográfica rural. In Proceedings of the X National Sediment Engineering Meeting, Foz do Iguaçu, Brazil, 5 December 2012. [Google Scholar]
- Ferrigo, S.; Minoti, R.; Roig, H.; Koide, S. Avaliação da utilização de diferentes métodos na calibração automática do modelo SWAT. In Proceedings of the XX Brazilian Symposium on Water Resources, Bento Gonçalves, Brasil, November 2013; Available online: https://www.researchgate.net/publication/260422891_AVALIACAO_DA_UTILIZACAO_DE_DIFERENTES_METODOS_NA_CALIBRACAO_AUTOMATICA_DO_MODELO_SWAT (accessed on 23 July 2021).
- Ferrigo, S. Análise de Consistência dos Parâmetros do Modelo SWAT Obtidos por Calibração Automática–Estudo de Caso da Bacia do Lago Descoberto–DF. Master’s Thesis, University of Brasília, Brasília, Brazil, 2014. [Google Scholar]
- Salles, L.A. Calibração e Validação do Modelo SWAT para a Predição de Vazões na Bacia do Ribeirão Pipiripau. Master’s Thesis, University of Brasília, Brasília, Brazil, 2012. [Google Scholar]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Xu, C.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- Sharifi, A.; Dinpashoh, Y. Sensitivity analysis of the Penman-Monteith reference crop evapotranspiration to climatic variables in Iran. Water Resour. Manag. 2014, 28, 5465–5476. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. Eng. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Shiri, J. Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. J. Hydrol. 2018, 561, 737–750. [Google Scholar] [CrossRef]
- Andréassian, V.; Perrin, C.; Michel, C. Impact of Imperfect Evapotranspiration Knowledge on the Efficiency and Parameters of Watershed Models. J. Hydrol. 2004, 286, 19–35. [Google Scholar] [CrossRef]
- Kelleher, C.A.; Shaw, S.B. Is ET often oversimplified in hydrologic models? Using long records to elucidate unaccounted for controls on ET. J. Hydrol. 2018, 557, 160–172. [Google Scholar] [CrossRef]
- Vourlitis, G.L.; de Souza Nogueira, J.; de Almeida Lobo, F.; Pinto, O.B. Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles. Int. J. Biometeorol. 2015, 59, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Melesse, A.M.; Yang, W. Influences of potential evapotranspiration estimation methods on SWAT’s hydrologic simulation in a northwestern Minnesota watershed. Trans. ASABE 2006, 49, 1755–1771. [Google Scholar] [CrossRef]
- Chen, M.; Gassman, P.W.; Srinivasan, R.; Cui, Y.; Arritt, R. Analysis of alternative climate datasets and evapotranspiration methods for the Upper Mississippi River Basin using SWAT within HAWQS. Sci. Total. Environ. 2020, 720, 137562. [Google Scholar] [CrossRef]
Potential Evapotranspiration Methods | Equation |
---|---|
Penman–Monteith | |
Priestley–Taylor | |
Hargreaves |
Parameters | Description | Range |
---|---|---|
ALPHA_BF | Baseflow alpha factor (days) | 0–1 |
ALPHA_BNK | Baseflow alpha factor for bank storage (days) | 0–1 |
CANMX | Maximum canopy storage (mm H2O) | 0–100 |
CH_K2 | Effective hydraulic conductivity in main channel alluvium (mm/h) | −0.01–500 |
CH_N2 | Manning’s “n” value for the main channel | −0.01–0.3 |
CN2 | Initial SCS runoff curve number for moisture condition II | 0.1–1.5 * |
DEEPST | Initial depth of water in the deep aquifer (mm H2O) | 0–50,000 |
EPCO | Plant uptake compensation factor | 0–1 |
ESCO | Soil evaporation compensation factor | 0–1 |
GW_DELAY | Groundwater delay time (days) | 0–500 |
GW_REVAP | Groundwater revap (water in the shallow aquifer returning to the root zone) coefficient. | 0.02–2 |
GWHT | Initial groundwater height (m). | 0–25 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) | 0–5000 |
OV_N | Manning’s “n” value for overland flow | 0.01–30 |
RCHRG_DP | Deep aquifer percolation fraction. | 0–1 |
REVAPMN | Threshold depth of water in the shallow aquifer for “revap” or percolation to the deep aquifer to occur (mm H2O) | 0–500 |
SHALLST | Initial depth of water in the shallow aquifer (mm H2O) | 0.05–24 |
SURLAG | Surface runoff lag coefficient | 0–50,000 |
Methods | Calibration | Verification | ||
---|---|---|---|---|
LogNSE | PBIAS (%) | LogNSE | PBIAS (%) | |
Penman–Monteith | 0.88 | −8.00 | 0.78 | 17.80 |
Priestley–Taylor | 0.87 | −5.40 | 0.32 | 43.00 |
Hargreaves | 0.78 | −2.30 | 0.53 | −13.80 |
Strauch and Volk [18] + PM parameters | 0.81 | 4.10 | 0.59 | 23.60 |
Strauch and Volk [18] | 0.89 | −1.50 | 0.72 | 23.30 |
Arroio Junior [23] + PM parameters | 0.55 | 28.90 | 0.33 | 51.00 |
Arroio Junior [23] | 0.89 | 0.78 | 0.63 | 33.30 |
Stat. Coef. | Seas. | Period | PM | PT | H | SV | AR |
---|---|---|---|---|---|---|---|
MAE (mm) | Diary | Calibration | 0.77 | 1.05 | 0.94 | 1.04 | 1.02 |
Verification | 1.01 | 1.03 | 1.02 | 0.89 | 0.89 | ||
Rainy | Calibration | 13.26 | 21.44 | 22.49 | 11.47 | 19.91 | |
Verification | 8.53 | 14.16 | 17.78 | 6.3 | 16 | ||
Dry | Calibration | 4.94 | 14.34 | 11.42 | 24.03 | 22.32 | |
Verification | 5.75 | 10.19 | 9.94 | 11.56 | 9.73 | ||
RMSE (mm) | Diary | Calibration | 1.16 | 1.37 | 1.21 | 1.37 | 1.34 |
Verification | 1.45 | 1.26 | 1.34 | 1.17 | 1.16 | ||
Rainy | Calibration | 16.76 | 28.4 | 23.3 | 16.14 | 21.8 | |
Verification | 11.97 | 19.2 | 22.25 | 9.41 | 18.63 | ||
Dry | Calibration | 8.51 | 15.48 | 15.79 | 33.44 | 28.32 | |
Verification | 8.25 | 10.66 | 13.89 | 14.63 | 12.25 | ||
R | Diary | Calibration | 0.46 | 0.47 | 0.5 | 0.19 | 0.18 |
Verification | 0.38 | 0.48 | 0.51 | 0.34 | 0.33 | ||
Rainy | Calibration | 0.39 | 0.37 | 0.37 | 0.58 | 0.61 | |
Verification | 0.86 | 0.84 | 0.91 | 0.94 | 0.97 | ||
Dry | Calibration | 0.67 | 0.62 | 0.48 | 0.51 | 0.57 | |
Verification | 0.87 | 0.82 | 0.77 | 0.11 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, A.d.N.; de Almeida, A.; Koide, S.; Minoti, R.T.; Siqueira, M.B.B.d. Evaluation of Evapotranspiration in Brazilian Cerrado Biome Simulated with the SWAT Model. Water 2021, 13, 2037. https://doi.org/10.3390/w13152037
Ferreira AdN, de Almeida A, Koide S, Minoti RT, Siqueira MBBd. Evaluation of Evapotranspiration in Brazilian Cerrado Biome Simulated with the SWAT Model. Water. 2021; 13(15):2037. https://doi.org/10.3390/w13152037
Chicago/Turabian StyleFerreira, Amanda do Nascimento, Andréia de Almeida, Sergio Koide, Ricardo Tezini Minoti, and Mario Benjamim Baptista de Siqueira. 2021. "Evaluation of Evapotranspiration in Brazilian Cerrado Biome Simulated with the SWAT Model" Water 13, no. 15: 2037. https://doi.org/10.3390/w13152037
APA StyleFerreira, A. d. N., de Almeida, A., Koide, S., Minoti, R. T., & Siqueira, M. B. B. d. (2021). Evaluation of Evapotranspiration in Brazilian Cerrado Biome Simulated with the SWAT Model. Water, 13(15), 2037. https://doi.org/10.3390/w13152037