Effects of Two-Stage Ditch and Natural Floodplains on Sediment Processes Driven by Different Hydrological Conditions
Abstract
:1. Introduction
- Channel sections adjacent to the two-stage ditch and the natural floodplains will show improved sediment conditions compared to channelized sections by having larger grain sizes and lower P contents;
- Benthic respiration rates will be higher in the channel sections adjacent to the two-stage ditch and the natural floodplains than in the channels without riparian zones;
- EPC0 will be lower in the channel adjacent to the two-stage ditch and the natural floodplain than in the channelized sections.
- Functional parameters will respond stronger to flow conditions in sites located in channelized sections than structural parameters.
2. Materials and Methods
2.1. The Maltsch River
2.2. Field Sampling
2.3. Lab Analyses
2.4. Data Analysis
3. Results
3.1. Background Water Quality
3.2. Effect of the Site on the Structural Parameters
3.3. Effect of the Site on Respiration Rate
3.4. Effect of the Site on EPC0
3.5. Effect of Hydrology on Stocks and Processes
4. Discussion
4.1. Effects of the Two-Stage Ditch and the Floodplain on Structural Parameters
4.2. Effects of the Two-Stage Ditch and the Floodplain on Sediment Processes
4.3. Responses of Structural and Functional Parameters to Restoration Measures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J. Synthesizing US river restoration efforts 2005. Science 2005, 308, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.; Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.; Zhang, Y.; Marrs, R.; Sekar, R.; Luo, X.; Wu, N. Evaluating ecosystem functioning following river restoration: The role of hydromorphology, bacteria, and macroinvertebrates. Sci. Total Environ. 2020, 743, 140583. [Google Scholar] [CrossRef] [PubMed]
- Pander, J.; Geist, J. Ecological indicators for stream restoration success. Ecol. Indic. 2013, 30, 106–118. [Google Scholar] [CrossRef]
- Haase, P.; Hering, D.; Jähnig, S.C.; Lorenz, A.W.; Sundermann, A. The impact of hydromorphological restoration on river ecological status: A comparison of fish, benthic invertebrates, and macrophytes. Hydrobiologia 2013, 704, 475–488. [Google Scholar] [CrossRef]
- Sandin, L.; Solimini, A.G. Freshwater ecosystem structure-function relationships: From theory to application. Freshw. Biol. 2009, 54, 2017–2024. [Google Scholar] [CrossRef]
- Bunn, S.E.; Davies, P.M. Biological processes in running waters and their implications for the assessment of ecological integrity. Hydrobiologia 2000, 422–423, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Clapcott, J.E.; Collier, K.J.; Death, R.G.; Goodwin, E.O.; Harding, J.S.; Kelly, D.; Leathwick, J.R.; Young, R.G. Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshw. Biol. 2012, 57, 74–90. [Google Scholar] [CrossRef]
- Fellows, C.S.; Clapcott, J.E.; Udy, J.W.; Bunn, S.E.; Harch, B.D.; Smith, M.J.; Davies, P.M. Benthic metabolism as an indicator of stream ecosystem health. Hydrobiologia 2006, 572, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Young, R.G.; Collier, K.J. Contrasting responses to catchment modification among a range of functional and structural indicators of river ecosystem health. Freshw. Biol. 2009, 54, 2155–2170. [Google Scholar] [CrossRef] [Green Version]
- Ryder, D.S.; Miller, W. Setting goals and measuring success: Linking patterns and processes in stream restoration. Hydrobiologia 2005, 552, 147–158. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Lisle, T.E.; Hilton, S. Fine bed material in pools of natural gravel bed channels. Water Resour. Res. 1999, 35, 1291–1304. [Google Scholar] [CrossRef]
- Hauer, C. Review of hydro-morphological management criteria on a river basin scale for preservation and restoration of freshwater pearl mussel habitats. Limnologica 2015, 50, 40–53. [Google Scholar] [CrossRef]
- Geist, J.; Auerswald, K. Physicochemical stream bed characteristics and recruitment of the freshwater pearl mussel (Margaritifera margaritifera). Freshw. Biol. 2007, 52, 2299–2316. [Google Scholar] [CrossRef]
- Mueller, M.; Pander, J.; Wild, R.; Lueders, T.; Geist, J. The effects of stream substratum texture on interstitial conditions and bacterial biofilms: Methodological strategies. Limnologica 2013, 43, 106–113. [Google Scholar] [CrossRef]
- Scheder, C.; Lerchegger, B.; Flödl, P.; Csar, D.; Gumpinger, C.; Hauer, C. River bed stability versus clogged interstitial: Depth-dependent accumulation of substances in freshwater pearl mussel (Margaritifera margaritifera L.) habitats in Austrian streams as a function of hydromorphological parameters. Limnologica 2015, 50, 29–39. [Google Scholar] [CrossRef]
- Sternecker, K.; Geist, J. The effects of stream substratum composition on the emergence of salmonid fry. Ecol. Freshw. Fish 2010, 19, 537–544. [Google Scholar] [CrossRef]
- Larsen, S.; Vaughan, I.P.; Ormerod, S.J. Scale-dependent effects of fine sediments on temperate headwater invertebrates. Freshw. Biol. 2009, 54, 203–219. [Google Scholar] [CrossRef]
- Leitner, P.; Hauer, C.; Ofenböck, T.; Pletterbauer, F.; Schmidt-Kloiber, A.; Graf, W. Fine sediment deposition affects biodiversity and density of benthic macroinvertebrates: A case study in the freshwater pearl mussel river Waldaist (Upper Austria). Limnologica 2015, 50, 54–57. [Google Scholar] [CrossRef]
- Baldan, D.; Piniewski, M.; Funk, A.; Gumpinger, C.; Flödl, P.; Höfer, S.; Hauer, C.; Hein, T. A multi-scale, integrative modeling framework for setting conservation priorities at the catchment scale for the Freshwater Pearl Mussel Margaritifera margaritifera. Sci. Total Environ. 2020, 718. [Google Scholar] [CrossRef] [PubMed]
- Baldan, D.; Kiesel, J.; Hauer, C.; Jähnig, S.C.; Hein, T. Increased sediment deposition triggered by climate change impacts Freshwater Pearl Mussels habitats and metapopulations. J. Appl. Ecol. 2021. [Google Scholar] [CrossRef]
- Naden, P.S.; Murphy, J.F.; Old, G.H.; Newman, J.; Scarlett, P.; Harman, M.; Duerdoth, C.P.; Hawczak, A.; Pretty, J.L.; Arnold, A.; et al. Understanding the controls on deposited fine sediment in the streams of agricultural catchments. Sci. Total Environ. 2016, 547, 366–381. [Google Scholar] [CrossRef] [Green Version]
- Roley, S.S.; Tank, J.L.; Stephen, M.L.; Johnson, L.T.; Beaulieu, J.J.; Witter, J.D. Floodplain restoration enhances denitrification and reach-scale nitrogen removal in an agricultural stream. Ecol. Appl. 2012, 22, 281–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohl, E.; Castro, J.; Cluer, B.; Merritts, D.; Powers, P.; Staab, B. Rediscovering, Reevaluating, and Restoring Lost River-Wetland Corridors. Front. Earth Sci. 2021, 9, 511. [Google Scholar] [CrossRef]
- Scheel, K.; Morrison, R.R.; Annis, A.; Nardi, F. Understanding the Large-Scale Influence of Levees on Floodplain Connectivity Using a Hydrogeomorphic Approach. J. Am. Water Resour. Assoc. 2019, 55, 413–429. [Google Scholar] [CrossRef]
- Morrison, R.R.; Bray, E.; Nardi, F.; Annis, A.; Dong, Q. Spatial Relationships of Levees and Wetland Systems within Floodplains of the Wabash Basin, USA. J. Am. Water Resour. Assoc. 2018, 54, 934–948. [Google Scholar] [CrossRef]
- Li, Y.; Tan, Z.; Zhang, Q.; Liu, X.; Chen, J.; Yao, J. Refining the concept of hydrological connectivity for large floodplain systems: Framework and implications for eco-environmental assessments. Water Res. 2021, 195, 117005. [Google Scholar] [CrossRef]
- Tan, Z.; Li, Y.; Zhang, Q.; Liu, X.; Song, Y.; Xue, C.; Lu, J. Assessing effective hydrological connectivity for floodplains with a framework integrating habitat suitability and sediment suspension behavior. Water Res. 2021, 201, 117253. [Google Scholar] [CrossRef]
- Mahl, U.H.; Tank, J.L.; Roley, S.S.; Davis, R.T. Two-Stage Ditch Floodplains Enhance N-Removal Capacity and Reduce Turbidity and Dissolved P in Agricultural Streams. J. Am. Water Resour. Assoc. 2015, 51, 923–940. [Google Scholar] [CrossRef]
- Davis, R.T.; Tank, J.L.; Mahl, U.H.; Winikoff, S.G.; Roley, S.S. The Influence of Two-Stage Ditches with Constructed Floodplains on Water Column Nutrients and Sediments in Agricultural Streams. J. Am. Water Resour. Assoc. 2015, 51, 941–955. [Google Scholar] [CrossRef]
- Krider, L.; Magner, J.; Hansen, B.; Wilson, B.; Kramer, G.; Peterson, J.; Nieber, J. Improvements in Fluvial Stability Associated with Two-Stage Ditch Construction in Mower County, Minnesota. J. Am. Water Resour. Assoc. 2017, 53, 886–902. [Google Scholar] [CrossRef]
- D’Ambrosio, J.L.; Ward, A.D.; Witter, J.D. Evaluating Geomorphic Change in Constructed Two-Stage Ditches. J. Am. Water Resour. Assoc. 2015, 51, 910–922. [Google Scholar] [CrossRef]
- McDowell, R.W.; Simpson, Z.P.; Stenger, R.; Depree, C. The influence of a flood event on the potential sediment control of baseflow phosphorus concentrations in an intensive agricultural catchment. J. Soils Sediments 2019, 19, 429–438. [Google Scholar] [CrossRef]
- Hoffman, A.R.; Armstrong, D.E.; Lathrop, R.C.; Penn, M.R. Characteristics and influence of phosphorus accumulated in the bed sediments of a stream located in an agricultural watershed. Aquat. Geochem. 2009, 15, 371–389. [Google Scholar] [CrossRef]
- Froelich, P.N. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism 1. Limnol. Oceanogr. 1988, 33, 649–668. [Google Scholar] [CrossRef]
- Uehlinger, U.; Naegeli, M.; Fisher, S.G. A heterotrophic desert stream? The role of sediment stability. West. North Am. Nat. 2002, 466–473. [Google Scholar]
- Atkinson, B.L.; Grace, M.R.; Hart, B.T.; Vanderkruk, K.E.N. Sediment instability affects the rate and location of primary production and respiration in a sand-bed stream. J. N. Am. Benthol. Soc. 2008, 27, 581–592. [Google Scholar] [CrossRef]
- Stutter, M.; Kronvang, B.; Ó hUallacháin, D.; Rozemeijer, J. Current insights into the effectiveness of riparian management, attainment of multiple benefits, and potential technical enhancements. J. Environ. Qual. 2019, 48, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Hutchins, M.G.; Harding, G.; Jarvie, H.P.; Marsh, T.J.; Bowes, M.J.; Loewenthal, M. Intense summer floods may induce prolonged increases in benthic respiration rates of more than one year leading to low river dissolved oxygen. J. Hydrol. X 2020, 8, 100056. [Google Scholar] [CrossRef]
- Stutter, M.I.; Lumsdon, D.G. Interactions of land use and dynamic river conditions on sorption equilibria between benthic sediments and river soluble reactive phosphorus concentrations. Water Res. 2008, 42, 4249–4260. [Google Scholar] [CrossRef] [PubMed]
- GBA Geologische Bundesanstalt, Bundesministerium fur Bildung. Wissenschaft un Forshung, Wien. Available online: https://www.geologie.ac.at. (accessed on 26 July 2021).
- Büttner, G. CORINE land cover and land cover change products. In Land use and land cover mapping in Europe; Springer: Berlin/Heidelberg, Germany, 2014; pp. 55–74. [Google Scholar]
- Hauer, C.; Höfler, S.; Dossi, F.; Flödl, P.; Graf, W.; Gstöttenmayr, D.; Gumpinger, C.; Holzinger, J.; Huber, T.; Janecek, B.; et al. Feststoffmanagement im Mühlviertel und im Bayerischen Wald. Endbericht. 2015. Available online: https://www.land-oberoesterreich.gv.at/Mediendateien/Formulare/Dokumente%20UWD%20Abt_WW/Endbericht_Feststoffmanagement.pdf (accessed on 26 July 2021).
- HDLO Discharge for leopoldschlag gauging stationm, Hydrographischer Dienst des Landes Oberösterreich (Linz). Available online: https://hydro.ooe.gv.at/#0150 (accessed on 26 July 2021).
- Doyle, M.W.; Shields, D.; Boyd, K.F.; Skidmore, P.B.; Dominick, D.W. Channel-forming discharge selection in river restoration design. J. Hydraul. Eng. 2007, 133, 831–837. [Google Scholar] [CrossRef]
- Ruban, V.; López-Sánchez, J.F.; Pardo, P.; Rauret, G.; Muntau, H.; Quevauviller, P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments—A synthesis of recent works. Anal. Bioanal. Chem. 2001, 370, 224–228. [Google Scholar] [CrossRef]
- Malá, J.; Lagová, M. Comparison of digestion methods for determination of total phosphorus in river sediments. Chem. Pap. 2014, 68, 1015–1021. [Google Scholar] [CrossRef]
- Lucci, G.M.; McDowell, R.W.; Condron, L.M. Evaluation of base solutions to determine equilibrium phosphours concentrations [EPC0] in stream sediments. Int. Agrophysics 2010, 24, 157–163. [Google Scholar]
- McDaniel, M.D.; David, M.B.; Royer, T. V Relationships between benthic sediments and water column phosphorus in Illinois streams. J. Environ. Qual. 2009, 38, 607–617. [Google Scholar] [CrossRef] [PubMed]
- House, W.A.; Denison, F.H. Factors influencing the measurement of equilibrium phosphate concentrations in river sediments. Water Res. 2000, 34, 1187–1200. [Google Scholar] [CrossRef]
- Warkentin, M.; Freese, H.M.; Karsten, U.; Schumann, R. New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots. Appl. Environ. Microbiol. 2007, 73, 6722–6729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing 2020; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Flödl, P.; Hauer, C. Studies on morphological regime conditions of bi-modal grain size rivers: Challenges and new insights for freshwater pearl mussel habitats. Limnologica 2019, 79, 125729. [Google Scholar] [CrossRef]
- Hjülström, F. Studies of the morphological activity of rivers as illustrated by the River Fyris, Bulletin. Geol. Inst. Upsalsa 1935, 25, 221–527. [Google Scholar]
- Mekonnen, M.; Keesstra, S.D.; Stroosnijder, L.; Baartman, J.E.M.; Maroulis, J. Soil Conservation Through Sediment Trapping: A Review. L. Degrad. Dev. 2015, 26, 544–556. [Google Scholar] [CrossRef]
- Baldan, D.; Mehdi, B.; Feldbacher, E.; Piniewski, M.; Hauer, C.; Hein, T. Assessing multi-scale effects of natural water retention measures on in-stream fine bed material deposits with a modeling cascade. J. Hydrol. 2020, 125702. [Google Scholar] [CrossRef]
- McDowell, R.W.; Sharpley, A.N. Uptake and Release of Phosphorus from Overland Flow in a Stream Environment. J. Environ. Qual. 2003, 32, 937–948. [Google Scholar] [CrossRef]
- Preiner, S.; Bondar-Kunze, E.; Pitzl, B.; Weigelhofer, G.; Hein, T. Effect of Hydrological Connectivity on the Phosphorus Buffering Capacity of an Urban Floodplain. Front. Environ. Sci. 2020, 8, 147. [Google Scholar] [CrossRef]
- Christopher, S.F.; Tank, J.L.; Mahl, U.H.; Yen, H.; Arnold, J.G.; Trentman, M.T.; Sowa, S.P.; Herbert, M.E.; Ross, J.A.; White, M.J.; et al. Modeling nutrient removal using watershed-scale implementation of the two-stage ditch. Ecol. Eng. 2017, 108, 358–369. [Google Scholar] [CrossRef]
- Hill, B.H.; Hall, R.K.; Husby, P.; Herlihy, A.T.; Dunne, M. Interregional comparisons of sediment microbial respiration in streams. Freshw. Biol. 2000, 44, 213–222. [Google Scholar] [CrossRef]
- Stutter, M.I.; Cains, J. Changes in aquatic microbial responses to C-substrates with stream water and sediment quality related to land use pressures. Chemosphere 2017, 184, 548–558. [Google Scholar] [CrossRef]
- Bott, T.L.; Newbold, J.D.; Arscott, D.B. Ecosystem metabolism in Piedmont streams: Reach geomorphology modulates the influence of riparian vegetation. Ecosystems 2006, 9, 398–421. [Google Scholar] [CrossRef]
- Hoellein, T.J.; Tank, J.L.; Entrekin, S.A.; Rosi-Marshall, E.J.; Stephen, M.L.; Lamberti, G.A. Effects of benthic habitat restoration on nutrient uptake and ecosystem metabolism in three headwater streams. River Res. Appl. 2012, 28, 1451–1461. [Google Scholar] [CrossRef]
- Roley, S.S.; Tank, J.L.; Griffiths, N.A.; Hall, R.O.; Davis, R.T. The Influence of Floodplain Restoration on Whole-Stream Metabolism in an Agricultural Stream: Insights fa 5-yrom ear Continuous Data Set. Freshw. Sci. 2014, 33, 1043–1059. [Google Scholar] [CrossRef]
- Simpson, Z.P.; McDowell, R.W.; Condron, L.M.; McDaniel, M.D.; Jarvie, H.P.; Abell, J.M. Sediment phosphorus buffering in streams at baseflow: A meta-analysis. J. Environ. Qual. 2021, 50, 287–311. [Google Scholar] [CrossRef] [PubMed]
- Weigelhofer, G.; Ramião, J.P.; Puritscher, A.; Hein, T. How do chronic nutrient loading and the duration of nutrient pulses affect nutrient uptake in headwater streams? Biogeochemistry 2018, 141, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Song, J.; Zhang, Y.; Lv, Y.; Han, G. Enhancement of phosphorus storage capacity of sediments by coastal wetland restoration, Yellow River Delta, China. Mar. Pollut. Bull. 2020, 150, 110666. [Google Scholar] [CrossRef] [PubMed]
- Moustakidis, I.V.; Schilling, K.E.; Weber, L.J. Soil total phosphorus deposition and variability patterns across the floodplains of an Iowa river. Catena 2019, 174, 84–94. [Google Scholar] [CrossRef]
- Bai, Y.; Zeng, Y. Lateral distribution of sediment and phosphorus in a two-stage ditch with partial emergent vegetation on the floodplain. Environ. Sci. Pollut. Res. 2019, 26, 29351–29365. [Google Scholar] [CrossRef]
- Agudelo, S.C.; Nelson, N.O.; Barnes, P.L.; Keane, T.D.; Pierzynski, G.M. Phosphorus Adsorption and Desorption Potential of Stream Sediments and Field Soils in Agricultural Watersheds. J. Environ. Qual. 2011, 40, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, E.S.; Palmer, M.A. River restoration: The fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecol. Appl. 2011, 21, 1926–1931. [Google Scholar] [CrossRef]
- Langhans, S.D.; Hermoso, V.; Linke, S.; Bunn, S.E.; Possingham, H.P. Cost-effective river rehabilitation planning: Optimizing for morphological benefits at large spatial scales. J. Environ. Manage. 2014, 132, 296–303. [Google Scholar] [CrossRef] [PubMed]
Event | Type | Sampling Date | Discharge (m3 s−1) |
---|---|---|---|
BF1 | Baseflow | 04.09.2018 | 0.38 * |
BF2 | Baseflow | 16.09.2019 | 0.45 ** |
BK1 | Bankfull | 06.06.2018 | 2.50 |
BK2 | Bankfull | 12.06.2019 | 3.30 |
FL | Flood | 10.07.2018 | 4.2 |
Site | Width (m) | Distance from the Closest Upstream Point (m) | Riparian Vegetation (y/n) | Channel Type |
---|---|---|---|---|
1 | 5 | - | y | Straight, fixed banks |
2 | 5 | 312 | y | Straight, fixed banks |
3 | 5 | 148 | y | Straight, fixed banks |
4 | 5 | 226 | y | Straight, fixed banks |
5 | 4 | 713 | n | Straight, fixed banks |
6 | 8 | 849 | y | Meandering, floodplain |
7 | 4 | 1173 | n | Meandering, incised |
Event | SRP (μg P L−1) | TP (μg P L−1) | DO (mg O2 L−1) | T (°C) | Cond (μS cm−1) | pH |
---|---|---|---|---|---|---|
BF1 | 33/51 | 47/67 | 8.81/9.38 | 14.5/15.2 | 89.6/109.9 | 6.2/7.3 |
BF2 | 34/86 | n.a. | 9.33/9.85 | 13.3/14.2 | 104.7/129.4 | 6.5/6.9 |
BK1 | 27/38 | 61/82 | n.a. | n.a. | n.a. | n.a. |
BK2 | 26/32 | n.a. | 8.7/9.11 | 16.5/17.9 | 104.7/129.4 | 7.0/7.5 |
FL | 22/26 | 33/75 | 8.72/9.78 | 15.2/16.4 | 102.9/124.6 | 6.6/7.3 |
Site ID | d14 (mm) | d50 (mm) | d84 (mm) | OMf (mg gDW−1) | OM (mg gDW−1) | SRP (µg P gDW−1) | Pinorg (µg P gDW−1) | Ptot (µg P gDW−1) |
---|---|---|---|---|---|---|---|---|
1 | 0.52 (0.20) a | 1.31 (0.68) a | 3.68 (2.03) b | 0.90 (0.50) a | 0.74 (0.48) ab | 0.56 (0.18) | 227 (67) a | 401 (145) a |
2 | 0.55 (0.19) a | 1.27 (0.52) a | 4.45 (2.49) ab | 0.91 (0.42) a | 0.94 (1.0) ab | 0.57 (0.27) | 244 (73) abc | 411 (152) ab |
3 | 0.62 (0.26) ab | 2.10 (1.16) bc | 7.26 (4.15) a | 1.80 (1.00) bc | 0.92 (0.42) ab | 0.60 (0.22) | 230 (60) a | 398 (161) a |
4 | 0.60 (0.20) ab | 1.67 (0.89) ab | 7.51 (5.86) a | 0.90 (0.34) a | 0.81 (0.46) ab | 0.70 (0.71) | 263 (91) abc | 466 (170) ab |
5 | 0.78 (0.21) b | 2.60 (0.99) c | 7.20 (2.86) a | 1.04 (0.54) ab | 0.68 (0.31) a | 0.88 (044) | 241 (69) ab | 436 (226) ab |
6 | 0.30 (0.17) c | 1.09 (0.70) a | 3.34 (2.81) b | 4.02 (2.00) d | 2.52 (2.01) c | 1.26 (0.55) | 314 (90) c | 570 (242) b |
7 | 0.50 (0.29) a | 2.16 (1.19) bc | 5.59 (2.67) ab | 2.34 (1.29) c | 1.63 (1.60) b | 1.28 (0.44) | 302 (122) bc | 544 (215) ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldan, D.; Pucher, M.; Akbari, E.; Hein, T.; Weigelhofer, G. Effects of Two-Stage Ditch and Natural Floodplains on Sediment Processes Driven by Different Hydrological Conditions. Water 2021, 13, 2046. https://doi.org/10.3390/w13152046
Baldan D, Pucher M, Akbari E, Hein T, Weigelhofer G. Effects of Two-Stage Ditch and Natural Floodplains on Sediment Processes Driven by Different Hydrological Conditions. Water. 2021; 13(15):2046. https://doi.org/10.3390/w13152046
Chicago/Turabian StyleBaldan, Damiano, Matthias Pucher, Elmira Akbari, Thomas Hein, and Gabriele Weigelhofer. 2021. "Effects of Two-Stage Ditch and Natural Floodplains on Sediment Processes Driven by Different Hydrological Conditions" Water 13, no. 15: 2046. https://doi.org/10.3390/w13152046
APA StyleBaldan, D., Pucher, M., Akbari, E., Hein, T., & Weigelhofer, G. (2021). Effects of Two-Stage Ditch and Natural Floodplains on Sediment Processes Driven by Different Hydrological Conditions. Water, 13(15), 2046. https://doi.org/10.3390/w13152046