Spatiotemporal Variations and Influencing Factors of Terrestrial Evapotranspiration and Its Components during Different Impoundment Periods in the Three Gorges Reservoir Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Division of Impoundment Periods
2.4. Sensitivity Analysis Method
3. Results
3.1. Model Validation
3.2. Interannual Variation of ET and Its Components
3.3. Seasonal Patterns of ET and Its Components
3.4. Response of ET and Its Components Variation to Climate Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Zhang, F.; Geng, M.; Wu, Q.; Liang, Y. Study on the spatial-temporal variation in evapotranspiration in China from 1948 to 2018. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Katul, G.G.; Oren, R.; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev. Geophys. 2012, 50, RG3002. [Google Scholar] [CrossRef] [Green Version]
- Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.L.; Sauer, T.J.; Ben-Gal, A. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Yu, Z.; Ding, Y.; Xing, W.; Lu, W. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying. J. Hydrol. 2018, 559, 471–485. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zhang, F.; Zhuang, Q. Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China. Agric. Water Manag. 2021, 243, 106473. [Google Scholar] [CrossRef]
- Ntshidi, Z.; Dzikiti, S.; Mazvimavi, D.; Mobe, N.T. Contribution of understorey vegetation to evapotranspiration partitioning in apple orchards under Mediterranean climatic conditions in South Africa. Agric. Water Manag. 2021, 245, 1233–1242. [Google Scholar] [CrossRef]
- Ochoa-Sanchez, A.E.; Crespo, P.; Carrillo-Rojas, G.; Marin, F.; Celleri, R. Unravelling evapotranspiration controls and components in tropical Andean tussock grasslands. Hydrol. Process. 2020, 34, 2117–2127. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Xiao, J.; Ma, M. Evapotranspiration components and water use efficiency from desert to alpine ecosystems in drylands. Agric. For. Meteorol. 2021, 298, 108283. [Google Scholar] [CrossRef]
- Xiong, Y.J.; Zhao, W.L.; Wang, P.; Paw, K.T.U.; Qiu, G.Y. Simple and applicable method for estimating evapotranspiration and its components in arid regions. J. Geophys. Res. Atmos. 2019, 124, 9963–9982. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44, W10419. [Google Scholar] [CrossRef]
- Zhang, Y.; Pena-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops—An energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; Li, F.; Du, T.; Tong, L.; Kang, S. Comparison of dual crop coefficient method and Shuttleworth-Wallace model in evapotranspiration partitioning in a vineyard of northwest China. Agric. Water Manag. 2015, 160, 41–56. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Chen, H.; Huang, J.J.; McBean, E.; Singh, V.P. Evaluation of alternative two-source remote sensing models in partitioning of land evapotranspiration. J. Hydrol. 2021, 597, 126029. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Thornton, P.E.; Oleson, K.W.; Bonan, G.B. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction. J. Hydrometeorol. 2007, 8, 862–880. [Google Scholar] [CrossRef]
- Niu, Z.; He, H.; Zhu, G.; Ren, X.; Zhang, L.; Zhang, K. A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015. Sci. Data 2020, 7, e2020JG005823. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Detto, M.; Montaldo, N.; Albertson, J.D.; Mancini, M.; Katul, G. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour. Res. 2006, 42, W08419. [Google Scholar] [CrossRef]
- Scott, D.F.; Bruijnzeel, L.A.; Vertessy, R.A.; Calder, I.R. HYDROLOGY—Impacts of Forest Plantations on Streamflow. In Encyclopedia of Forest Sciences; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Gong, D.; Kang, S.; Yao, L.; Zhang, L. Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods. Hydrol. Process. 2007, 21, 931–938. [Google Scholar] [CrossRef]
- Wang, X.; de Linage, C.; Famiglietti, J.; Zender, C.S. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements. Water Resour. Res. 2011, 47, W12502. [Google Scholar] [CrossRef]
- Tang, Q.; Bao, Y.; He, X.; Fu, B.; Collins, A.L.; Zhang, X. Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir, China. Sci. Total Environ. 2016, 548, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, R.L. The Sanxia (3 Gorges) Project—The environmental argument surrounding China super dam. Glob. Ecol. Biogeogr. Lett. 1992, 2, 105–125. [Google Scholar] [CrossRef]
- Fu, B.-J.; Wu, B.-F.; Lue, Y.-H.; Xu, Z.-H.; Cao, J.-H.; Niu, D.; Yang, G.-S.; Zhou, Y.-M. Three Gorges Project: Efforts and challenges for the environment. Prog. Phys. Geogr. Earth Environ. 2010, 34, 741–754. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.; Yang, G. Environmental impact assessments of the Three Gorges Project in China: Issues and interventions. Earth Sci. Rev. 2013, 124, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Lou, Z. The environmental changes and mitigation actions in the Three Gorges Reservoir region, China. Environ. Sci. Policy 2011, 14, 1132–1138. [Google Scholar] [CrossRef]
- Huang, C.; Huang, X.; Peng, C.; Zhou, Z.; Teng, M.; Wang, P. Land use/cover change in the Three Gorges Reservoir area, China: Reconciling the land use conflicts between development and protection. Catena 2019, 175, 388–399. [Google Scholar] [CrossRef]
- Li, X.; Sha, J.; Wang, Z.-L. Influence of the Three Gorges Reservoir on climate drought in the Yangtze River Basin. Environ. Sci. Pollut. Res. 2021, 28, 29755–29772. [Google Scholar] [CrossRef]
- Deng, H.; Shao, J.-A. Evapotranspiration and humidity variations in response to land cover conversions in the Three Gorges reservoir region. J. Mt. Sci. 2018, 15, 590–605. [Google Scholar] [CrossRef]
- Hao, B.; Ma, M.; Li, S.; Li, Q.; Hao, D.; Huang, J.; Ge, Z.; Yang, H.; Han, X. Land use change and climate variation in the Three Gorges reservoir catchment from 2000 to 2015 based on the Google Earth engine. Sensors 2019, 19, 2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, M.-q.; Chen, J.-L.; Mirza, Z.A.; Chen, C.-D.; Wen, Z.-F.; Jiang, Y.; Ma, M.-h.; Wu, S.-J. Spatial distribution and temporal variation of reference evapotranspiration in the Three Gorges reservoir area during 1960–2013. Int. J. Climatol. 2016, 36, 4497–4511. [Google Scholar] [CrossRef]
- Ma, Z.Z.; Ray, R.L.; He, Y.P. Assessing the spatiotemporal distributions of evapotranspiration in the Three Gorges Reservoir Region of China using remote sensing data. J. Mt. Sci. 2018, 15, 2676–2692. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, W.; Zhao, Y.; Wang, Y.; Hou, B.; Zhou, Y.; Yang, H.; Zhang, X.; Cui, H. The spatiotemporal variability of evapotranspiration and its response to climate change and land use/land cover change in the Three Gorges reservoir. Water 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, L.; Chen, C.; Fu, Z.; Peng, Z. Using satellite gravity and hydrological data to estimate changes in evapotranspiration induced by water storage fluctuations in the Three Gorges reservoir of China. Remote Sens. 2020, 12, 2143. [Google Scholar] [CrossRef]
- Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.S.; Yu, Q. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 2018, 11, e1974. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Shen, Y.; Kong, D.; Zhou, X. LUCC-driven changes in gross primary production and actual evapotranspiration in Northern China. J. Geophys. Res. Atmos. 2020, 125, e2019JD031705. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Shen, Y.; Yu, Q. Decadal water storage decrease driven by vegetation changes in the Yellow River Basin. Sci. Bull. 2020, 65, 1859–1861. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Bontemps, S.; Defourny, P.; Radoux, J.; Bogaert, E.V.; Lamarche, C.; Achard, F.; Mayaux, P.; Boettcher, M.; Brockmann, C.; Kirches, G. Consistent Global Land Cover Maps For Climate Modelling Communities: Current Achievements Of The ESA’ Land Cover CCI. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 2013, 9–13 September.
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Olberz, M.; Kahlen, K.; Zinkernagel, J. Assessing the impact of reference evapotranspiration models on decision support systems for irrigation. Horticulturae 2018, 4, 49. [Google Scholar] [CrossRef] [Green Version]
- Ruiz- Alvarez, M.; Gomariz-Castillo, F.; Alonso-Sarria, F. Evapotranspiration response to climate change in semi-arid areas: Using random forest as multi-model ensemble method. Water 2021, 13, 222. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Hu, G.; Jia, L.; Menenti, M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sens. Environ. 2015, 156, 510–526. [Google Scholar] [CrossRef]
- Jang, K.; Kang, S.; Lim, Y.-J.; Jeong, S.; Kim, J.; Kimball, J.S.; Hong, S.Y. Monitoring daily evapotranspiration in Northeast Asia using MODIS and a regional Land Data Assimilation System. J. Geophys. Res. Atmos. 2013, 118, 12927–12940. [Google Scholar] [CrossRef] [Green Version]
- Trambauer, P.; Dutra, E.; Maskey, S.; Werner, M.; Pappenberger, F.; van Beek, L.P.H.; Uhlenbrook, S. Comparison of different evaporation estimates over the African continent. Hydrol. Earth Syst. Sci. 2014, 18, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Singh, R. Evaluation of variable-infiltration capacity model and MODIS-terra satellite-derived grid-scale evapotranspiration estimates in a river basin with tropical monsoon-type climatology. J. Irrig. Drain. Eng. 2017, 143, 04017028. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Kumari, N.; Maza, M. Hydrological response to agricultural land use heterogeneity using variable infiltration capacity model. Water Resour. Manag. 2020, 34, 3779–3794. [Google Scholar] [CrossRef]
- Sharma, K.; Irmak, S.; Kukal, M.S. Propagation of soil moisture sensing uncertainty into estimation of total soil water, evapotranspiration and irrigation decision-making. Agric. Water Manag. 2021, 243, 106454. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Zhang, Y.; Liu, W. Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982–2012: Validations and spatiotemporal analyses. J. Geophys. Res. Atmos. 2019, 124, 4326–4351. [Google Scholar] [CrossRef]
- Huo, A.; Yang, L.; Luo, P.; Cheng, Y.; Peng, J.; Nover, D. Influence of landfill and land use scenario on runoff, evapotranspiration, and sediment yield over the Chinese Loess Plateau. Ecol. Indic. 2021, 121, 107208. [Google Scholar] [CrossRef]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347. [Google Scholar] [CrossRef]
- Lu, J.; Wang, G.; Gong, T.; Hagan, D.F.T.; Wang, Y.; Jiang, T.; Su, B. Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product. Theor. Appl. Climatol. 2019, 138, 1493–1510. [Google Scholar] [CrossRef]
- Jiang, Z.-Y.; Yang, Z.-G.; Zhang, S.-Y.; Liao, C.-M.; Hu, Z.-M.; Cao, R.-C.; Wu, H.-W. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin. J. Environ. Manag. 2020, 262, 110310. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wu, G.; Zhang, L.; Li, S.; Zhu, X.; Zheng, H.; Zhang, L.; Sun, X.; Yu, G. Modeling and partitioning of regional evapotranspiration using a satellite-driven water-carbon coupling model. Remote Sens. 2017, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Pascolini-Campbell, M.; Reager, J.T.; Chandanpurkar, H.A.; Rodell, M. A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature 2021, 593, 543–547. [Google Scholar] [CrossRef]
- Byrne, M.P.; O’Gorman, P.A. Land-ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations. J. Clim. 2013, 26, 4000–4016. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1948, 193, 120. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, Z.; Sun, X. Changing landscape in the Three Gorges Reservoir area of Yangtze River from 1977 to 2005: Land use/land cover, vegetation cover changes estimated using multi-source satellite data. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 403–412. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Jeong, S.-J.; Zhou, L.; Zeng, Z.; Ciais, P.; Chen, D.; Huang, M.; Jin, C.-S.; Li, L.Z.X.; et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Massmann, A.; Gentine, P.; Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Modeling Earth Syst. 2019, 11, 3305–3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dataset | Including Data | Time Resolution | Time Period | Data Source |
---|---|---|---|---|
PML V2 | ET, Ec, Es, Ei | 8-day | 2000–2020 | https://code.earthengine.google.com/7af6ab197596a75b8858f5ab34ed2bca (accessed on 30 July 2021) |
MOD16 | ET | 8-day | 2000–2020 | https://earthdata.nasa.gov/ (accessed on 30 July 2021) |
Land use data | land use | yearly | 2015 | http://www.esa-landcover-cci.org/ (accessed on 30 July 2021) |
Meteorological data | PT, Ta, WS, RH, SSD | daily | 2000–2020 | the China Meteorological Administration |
Water level data | water level | daily | 2003–2020 | the Three Gorges Corporation |
Name | Longitude (°E) | Latitude (°N) | Elevation (m a.s.l) | PT (mm) | Ta (°C) | WS (m/s) | SSD (h) | VPD |
---|---|---|---|---|---|---|---|---|
Badong (BD) | 110.22 | 31.02 | 3340 | 1085.44 | 17.53 | 1.77 | 1602.23 | 0.64 |
Changshou (CS) | 107.04 | 29.50 | 3776 | 1103.62 | 18.15 | 1.31 | 1126.22 | 0.54 |
Fengdu (FD) | 107.41 | 29.52 | 2180 | 1035.60 | 18.85 | 1.29 | 1265.67 | 0.64 |
Fengjie (FJ) | 109.30 | 31.03 | 6073 | 1038.52 | 18.39 | 1.73 | 1372.31 | 0.69 |
Jiangjin (JJ) | 106.15 | 29.17 | 2614 | 1009.62 | 18.89 | 1.41 | 1087.69 | 0.41 |
Shapingba (SPB) | 106.28 | 29.35 | 2591 | 1134.39 | 18.96 | 1.40 | 989.72 | 0.63 |
Wanzhou (WZ) | 108.24 | 30.46 | 1867 | 1177.85 | 18.87 | 0.93 | 1203.34 | 0.41 |
Xingshan (XS) | 110.46 | 31.14 | 2755 | 962.15 | 17.23 | 1.11 | 1560.64 | 0.46 |
Station | Var Explained (%) | PT | Ta | WS | VPD | SSD | |
---|---|---|---|---|---|---|---|
ET | BD | 89.84 | 0.0922 | 0.6573 | 0.0204 | 0.3740 | 0.1206 |
CS | 86.21 | 0.1097 | 1.0272 | 0.0138 | 0.4316 | 0.1264 | |
FD | 88.23 | 0.0930 | 0.7969 | 0.0557 | 0.4015 | 0.1345 | |
FJ | 89.60 | 0.0967 | 0.7408 | 0.0173 | 0.3404 | 0.1123 | |
JJ | 86.04 | 0.1121 | 0.7987 | 0.0171 | 0.3271 | 0.1782 | |
SPB | 73.73 | 0.1085 | 0.8812 | 0.0299 | 0.4329 | 0.1254 | |
WZ | 89.08 | 0.0862 | 0.8290 | 0.0402 | 0.5208 | 0.1885 | |
XS | 89.79 | 0.1004 | 0.7454 | 0.0120 | 0.3614 | 0.0831 | |
Mean | 86.57 | 0.0999 | 0.8096 | 0.0258 | 0.3987 | 0.1336 | |
Ec | BD | 90.02 | 0.0288 | 0.3951 | 0.0129 | 0.1837 | 0.0780 |
CS | 84.73 | 0.0271 | 0.5732 | 0.0141 | 0.2514 | 0.0851 | |
FD | 87.76 | 0.0273 | 0.4418 | 0.0326 | 0.2150 | 0.0940 | |
FJ | 91.16 | 0.0393 | 0.5359 | 0.0161 | 0.1919 | 0.0839 | |
JJ | 83.54 | 0.0374 | 0.4638 | 0.0089 | 0.1410 | 0.0851 | |
SPB | 70.36 | 0.0550 | 0.5373 | 0.0257 | 0.2202 | 0.0723 | |
WZ | 87.54 | 0.0229 | 0.3838 | 0.0148 | 0.1544 | 0.0876 | |
XS | 89.89 | 0.0381 | 0.5237 | 0.0091 | 0.2211 | 0.0678 | |
Mean | 85.63 | 0.0345 | 0.4818 | 0.0168 | 0.1973 | 0.0817 | |
Es | BD | 35.42 | 0.0083 | 0.0315 | 0.0025 | 0.0255 | 0.0093 |
CS | 29.66 | 0.0076 | 0.0453 | 0.0007 | 0.0264 | 0.0195 | |
FD | 26.86 | 0.0040 | 0.0321 | 0.0040 | 0.0185 | 0.0086 | |
FJ | 33.67 | 0.0060 | 0.0225 | 0.0019 | 0.0169 | 0.0076 | |
JJ | 53.60 | 0.0232 | 0.0815 | 0.0071 | 0.0571 | 0.0280 | |
SPB | 39.51 | 0.0140 | 0.0756 | 0.0062 | 0.0547 | 0.0120 | |
WZ | 67.26 | 0.0207 | 0.1137 | 0.0133 | 0.0978 | 0.0332 | |
XS | 32.43 | 0.0113 | 0.0431 | 0.0025 | 0.0231 | 0.0064 | |
Mean | 39.80 | 0.0119 | 0.0557 | 0.0048 | 0.0400 | 0.0156 | |
Ei | BD | 65.44 | 0.0188 | 0.1020 | 0.0034 | 0.0233 | 0.0069 |
CS | 62.63 | 0.0220 | 0.1270 | 0.0051 | 0.0314 | 0.0120 | |
FD | 65.74 | 0.0163 | 0.0957 | 0.0048 | 0.0227 | 0.0097 | |
FJ | 70.16 | 0.0085 | 0.0331 | 0.0003 | 0.0075 | 0.0046 | |
JJ | 60.74 | 0.0027 | 0.0116 | 0.0004 | 0.0040 | 0.0022 | |
SPB | 43.67 | 0.0021 | 0.0156 | 0.0002 | 0.0055 | 0.0038 | |
WZ | 58.74 | 0.0027 | 0.0118 | 0.0004 | 0.0046 | 0.0026 | |
XS | 73.21 | 0.0178 | 0.0473 | 0.0008 | 0.0109 | 0.0028 | |
Mean | 62.54 | 0.0114 | 0.0555 | 0.0019 | 0.0138 | 0.0056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Tang, Q.; Yan, L.; Wu, S.; Yan, L.; Tan, D.; Chen, J.; Chen, Q. Spatiotemporal Variations and Influencing Factors of Terrestrial Evapotranspiration and Its Components during Different Impoundment Periods in the Three Gorges Reservoir Area. Water 2021, 13, 2111. https://doi.org/10.3390/w13152111
Ji Y, Tang Q, Yan L, Wu S, Yan L, Tan D, Chen J, Chen Q. Spatiotemporal Variations and Influencing Factors of Terrestrial Evapotranspiration and Its Components during Different Impoundment Periods in the Three Gorges Reservoir Area. Water. 2021; 13(15):2111. https://doi.org/10.3390/w13152111
Chicago/Turabian StyleJi, Yongyue, Qingqing Tang, Lingyun Yan, Shengjun Wu, Liming Yan, Daming Tan, Jilong Chen, and Qiao Chen. 2021. "Spatiotemporal Variations and Influencing Factors of Terrestrial Evapotranspiration and Its Components during Different Impoundment Periods in the Three Gorges Reservoir Area" Water 13, no. 15: 2111. https://doi.org/10.3390/w13152111
APA StyleJi, Y., Tang, Q., Yan, L., Wu, S., Yan, L., Tan, D., Chen, J., & Chen, Q. (2021). Spatiotemporal Variations and Influencing Factors of Terrestrial Evapotranspiration and Its Components during Different Impoundment Periods in the Three Gorges Reservoir Area. Water, 13(15), 2111. https://doi.org/10.3390/w13152111