Component Combination Test to Investigate Improvement of the IHACRES and GR4J Rainfall–Runoff Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catchment and Data
2.2. Calibration Method
2.3. Sensitivity Analysis Method
2.4. Objective and Target Functions
2.5. Rainfall–Runoff Models
3. Research Procedure
4. Results and Discussion
4.1. Comparison of Model Performances for High-Flow Objective Function
4.1.1. Wet Catchments
4.1.2. Intermediate Catchment
4.1.3. Dry Catchments
4.2. Comparison of Model Performances for Low-Flow Objective Function
4.2.1. Wet Catchments
4.2.2. Intermediate Catchment
4.2.3. Dry Catchments
4.3. Sensitivity Analysis of Parameters of Rainfall–Runoff Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Croke, B.F.W.; Jakeman, A.J. A catchment moisture deficit module for the IHACRES rainfall-runoff model. Environ. Modell. Softw. 2004, 19, 1–5. [Google Scholar] [CrossRef]
- Shin, M.J.; Guillaume, J.H.A.; Croke, B.F.W.; Jakeman, A.J. A review of foundational methods for checking the structural identifiability of models: Results for rainfall–runoff. J. Hydrol. 2015, 520, 1–16. [Google Scholar] [CrossRef]
- Oudin, L.; Andréassian, V.; Mathevet, T.; Perrin, C.; Michel, C. Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations. Water Resour. Res. 2006, 42, W07410. [Google Scholar] [CrossRef]
- Shin, M.J.; Guillaume, J.H.A.; Croke, B.F.W.; Jakeman, A.J. Addressing ten questions about conceptual rainfall–runoff models with global sensitivity analyses in R. J. Hydrol. 2013, 503, 135–152. [Google Scholar] [CrossRef]
- Littlewood, I.G.; Croke, B.F. Effects of data time-step on the accuracy of calibrated rainfall–streamflow model parameters: Practical aspects of uncertainty reduction. Hydrol. Res. 2013, 44, 430–440. [Google Scholar] [CrossRef]
- Sezen, C.; Bezak, N.; Bai, Y.; Šraj, M. Hydrological modelling of karst catchment using lumped conceptual and data mining models. J. Hydrol. 2019, 576, 98–110. [Google Scholar] [CrossRef]
- Wagener, T.; Boyle, D.P.; Lees, M.J.; Wheater, H.S.; Gupta, H.V.; Sorooshian, S. A framework for development and application of hydrological models. Hydrol. Earth Syst. Sci. Discuss. 2001, 5, 13–26. [Google Scholar] [CrossRef]
- Abebe, N.A.; Ogden, F.L.; Pradhan, N.R. Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: Implications for parameter estimation. J. Hydrol. 2010, 389, 301–310. [Google Scholar] [CrossRef]
- Clark, M.P.; Slater, A.G.; Rupp, D.E.; Woods, R.A.; Vrugt, J.A.; Gupta, H.V.; Hay, L.E. Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resour. Res. 2008, 44, W00B02. [Google Scholar] [CrossRef]
- Bai, Y.; Wagener, T.; Reed, P. A top-down framework for watershed model evaluation and selection under uncertainty. Environ. Modell. Softw. 2009, 24, 901–916. [Google Scholar] [CrossRef]
- Fenicia, F.; Kavetski, D.; Savenije, H.H. Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development. Water Resour. Res. 2011, 47, W11510. [Google Scholar] [CrossRef]
- Van Hoey, S.; Seuntjens, P.; van der Kwast, J.; Nopens, I. A qualitative model structure sensitivity analysis method to support model selection. J. Hydrol. 2014, 519, 3426–3435. [Google Scholar] [CrossRef]
- Croke, B.F.W.; Jakeman, A.J. Predictions in catchment hydrology: An Australian perspective. Mar. Freshw. Res. 2001, 52, 65–79. [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andréassian, V. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J. Hydrol. 2001, 242, 275–301. [Google Scholar] [CrossRef]
- Dijk, A.I.; Beck, H.E.; Crosbie, R.S.; Jeu, R.A.; Liu, Y.Y.; Podger, G.M.; Viney, N.R. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49, 1040–1057. [Google Scholar] [CrossRef]
- Klemeš, V. Operational testing of hydrological simulation models. Hydrol. Sci. J. 1986, 31, 13–24. [Google Scholar] [CrossRef]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol. 1996, 181, 23–48. [Google Scholar] [CrossRef]
- Anctil, F.; Perrin, C.; Andréassian, V. Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environ. Modell. Softw. 2004, 19, 357–368. [Google Scholar] [CrossRef]
- Kim, H.S.; Croke, B.F.W.; Jakeman, A.J.; Chiew, F.H.S. An assessment of modelling capacity to identify the impacts of climate variability on catchment hydrology. Math. Comput. Simulat. 2011, 81, 1419–1429. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall–runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
- Nicklow, J.; Reed, P.; Savic, D.; Dessalegne, T.; Harrell, L.; Chan-Hilton, A.; Karamouz, M.; Minsker, B.; Ostfeld, A.; Singh, A.; et al. State of the art for genetic algorithms and beyond in water resources planning and management. J. Water Res. Plan. Manag. 2010, 136, 412–432. [Google Scholar] [CrossRef]
- Shin, M.J.; Eum, H.I.; Kim, C.S.; Jung, I.W. Alteration of hydrologic indicators for Korean catchments under CMIP5 climate projections. Hydrol. Process. 2016, 30, 4517–4542. [Google Scholar] [CrossRef]
- Choi, Y.; Shin, M.J.; Kim, K. Preliminary Study of Computational Time Steps in a Physically Based Distributed Rainfall–Runoff Model. Water 2018, 10, 1269. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.J.; Choi, Y. Combining an R-based evolutionary algorithm and hydrological model for effective parameter calibration. Water 2018, 10, 1339. [Google Scholar] [CrossRef] [Green Version]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial System: An Introduction with Application to Biology, Control and Artificial Intelligence; The University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Price, W.L. Global optimization algorithms for a CAD workstation. J. Optim. Theory Appl. 1987, 55, 133–146. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Sobol, I.M. Sensitivity analysis for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Herman, J.D.; Kollat, J.B.; Reed, P.M.; Wagener, T. Technical note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrol. Earth Syst. Sci. 2013, 17, 2893–2903. [Google Scholar] [CrossRef] [Green Version]
- Sarrazin, F.; Pianosi, F.; Wagener, T. Global sensitivity analysis of environmental models: Convergence and validation. Environ. Modell. Softw. 2016, 79, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.J.; Choi, Y. Sensitivity Analysis to Investigate the Reliability of the Grid-Based Rainfall-Runoff Model. Water 2018, 10, 1839. [Google Scholar] [CrossRef] [Green Version]
- Saltelli, A.; Chan, K.; Scott, E.M. Sensitivity Analysis; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Saltelli, A.; Annoni, P. How to avoid a perfunctory sensitivity analysis. Environ. Modell. Softw. 2010, 25, 1508–1517. [Google Scholar] [CrossRef]
- Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 2002, 145, 280–297. [Google Scholar] [CrossRef]
- Pujol, G.; Iooss, B.; Janon, A. Package ‘Sensitivity’: Sensitivity Analysis. R Package Version 1.6-1. 2012. Available online: http://CRAN.R-project.org/package=sensitivity (accessed on 28 December 2012).
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Mathevet, T.; Michel, C.; Andréassian, V.; Perrin, C. A bounded version of the Nash–Sutcliffe criterion for better model assessment on large sets of basins. In Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment–MOPEX; IAHS Publ.: Wallingford, UK, 2006. [Google Scholar]
- Andréassian, V.; Lerat, J.; Le Moine, N.; Perrin, C. Neighbors: Nature’s own hydrological models. J. Hydrol. 2012, 414–415, 49–58. [Google Scholar] [CrossRef]
- Shin, M.J.; Kim, C.S. Assessment of the suitability of rainfall–runoff models by coupling performance statistics and sensitivity analysis. Hydrol. Res. 2017, 48, 1192–1213. [Google Scholar] [CrossRef] [Green Version]
- Le Moine, N.; Andréassian, V.; Mathevet, T. Confronting surface- and groundwater balances on the La Rochefoucauld-Touvre karstic system (Charente, France). Water Resour. Res. 2008, 44, W03403. [Google Scholar] [CrossRef]
- Andrews, F.T.; Croke, B.F.W.; Jakeman, A.J. An open software environment for hydrological model assessment and development. Environ. Modell. Softw. 2011, 26, 1171–1185. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Hrmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Catchment | Average Rainfall (mm/day) | Average Runoff (mm/day) | ||||||
---|---|---|---|---|---|---|---|---|
1970s | 1980s | 1990s | 2000s | 1970s | 1980s | 1990s | 2000s | |
Brindabella | 3.22 | 3.23 | 3.27 | 2.63 | 1.15 | 1.05 | 1.02 | 0.62 |
Gingera | 2.90 | 2.77 | 2.86 | 2.29 | 1.02 | 0.80 | 0.80 | 0.46 |
Orroral Crossing | 2.67 | 2.55 | 2.61 | 2.05 | 0.42 | 0.37 | 0.37 | 0.14 |
Tinderry | 2.30 | 2.08 | 1.93 | 1.57 | 0.66 | 0.38 | 0.28 | 0.06 |
Burbong | 1.96 | 1.87 | 1.93 | 1.50 | 0.35 | 0.22 | 0.19 | 0.02 |
Parameter | Parameter Number | Unit | Range | Description |
---|---|---|---|---|
GR4J | ||||
x1 | 1 | [mm] | 50–5000 | Maximum capacity of the production store |
x2 | 2 | [mm] | −15 to 4 | Groundwater exchange coefficient |
x3 | 3 | [mm] | 10–1300 | One day ahead maximum capacity of the routing store |
x4 | 4 | [day] | 0.5–5 | Time base of unit hydrograph UH1 |
IHACRES-CMD | ||||
f | 1 | [–] | 0.5–1.3 | CMD stress threshold as a proportion of d |
e | - | [–] | 1 (fixed) | Temperature to potential evapotranspiration (PET) conversion factor |
d | - | [mm] | 200 (fixed) | CMD threshold for producing flow |
τs (tau_s) | 2 | [day] | 10–1000 | Time constant for slow-flow store |
τq (tau_q) | 3 | [day] | 0–10 | Time constant for quick-flow store |
vs (v_s) | 4 | [–] | 0–1 | Fractional volume of slow flow |
GR_IH | ||||
x1 | 1 | [mm] | 50–5000 | Maximum capacity of the production store |
τs (tau_s) | 2 | [day] | 10–1000 | Time constant for slow-flow store |
τq (tau_q) | 3 | [day] | 0–10 | Time constant for quick-flow store |
vs (v_s) | 4 | [–] | 0–1 | Fractional volume of slow flow |
IH_GR | ||||
f | 1 | [–] | 0.5–1.3 | CMD stress threshold as a proportion of d |
e | - | [–] | 1 (fixed) | Temperature to potential evapotranspiration (PET) conversion factor |
d | - | [mm] | 200 (fixed) | CMD threshold for producing flow |
x2 | 2 | [mm] | −15 to 4 | Groundwater exchange coefficient |
x3 | 3 | [mm] | 10–1300 | One day ahead maximum capacity of the routing store |
x4 | 4 | [day] | 0.5–5 | Time base of unit hydrograph UH1 |
Aim | Catchment Characteristics | Catchment | Production Component | Routing Component | Best Model a |
---|---|---|---|---|---|
Improvement of high-flow | Wet | Brindabella | IH | IH | IHACRES |
simulation | Gingera | IH | IH | IHACRES | |
Intermediate | Orroral Crossing | GR | - | GR_IH | |
Dry | Tinderry | - | GR | GR4J | |
Burbong | - | GR | IH_GR | ||
Improvement of low-flow | Wet | Brindabella | - | GR | GR4J |
simulation | Gingera | - | GR | GR4J | |
Intermediate | Orroral Crossing | GR | IH | GR_IH | |
Dry | Tinderry | - | IH | GR_IH | |
Burbong | GR | GR | GR4J |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, M.-J.; Kim, C.-S. Component Combination Test to Investigate Improvement of the IHACRES and GR4J Rainfall–Runoff Models. Water 2021, 13, 2126. https://doi.org/10.3390/w13152126
Shin M-J, Kim C-S. Component Combination Test to Investigate Improvement of the IHACRES and GR4J Rainfall–Runoff Models. Water. 2021; 13(15):2126. https://doi.org/10.3390/w13152126
Chicago/Turabian StyleShin, Mun-Ju, and Chung-Soo Kim. 2021. "Component Combination Test to Investigate Improvement of the IHACRES and GR4J Rainfall–Runoff Models" Water 13, no. 15: 2126. https://doi.org/10.3390/w13152126
APA StyleShin, M. -J., & Kim, C. -S. (2021). Component Combination Test to Investigate Improvement of the IHACRES and GR4J Rainfall–Runoff Models. Water, 13(15), 2126. https://doi.org/10.3390/w13152126