Exploring the Potential of Zoning Regulation for Reducing Ice-Jam Flood Risk Using a Stochastic Modelling Framework
Abstract
:1. Introduction
2. Study Reach
3. Stochastic Modelling Framework
4. Flood Risk Estimation
5. Global Sensitivity Analysis
6. Impact of Zoning on the Flood Risk at TFM
7. Sensitivity of Model Parameters and Boundary Conditions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beltaos, S.; River, I.J. River Ice Jams; Water Resources Publication: Littleton, CO, USA, 1995. [Google Scholar]
- Beltaos, S.; Burrell, B.C. Extreme Ice Jam Floods along the Saint John River; IAHS Publication: Wallingford, UK, 2002. [Google Scholar]
- Munck, S.D.; Gauthier, Y.; Bernier, M.; Chokmani, K.; Légaré, S. River predisposition to ice jams: A simplified geospatial model. Nat. Hazards Earth Syst. Sci. 2017, 17, 1033–1045. [Google Scholar] [CrossRef] [Green Version]
- Healy, D.; Hicks, F.E. Experimental study of ice jam formation dynamics. J. Cold Reg. Eng. 2006, 20, 117–139. [Google Scholar] [CrossRef]
- Scrimgeour, G.J.; Prowse, T.D.; Culp, J.M.; Chambers, P.A. Ecological effects of river ice break-up: A review and perspective. Freshw. Biol. 1994, 32, 261–275. [Google Scholar] [CrossRef]
- Beltaos, S. Onset of river ice breakup. Cold Reg. Sci. Technol. 1997, 25, 183–196. [Google Scholar] [CrossRef]
- Rokaya, P.; Budhathoki, S.; Lindenschmidt, K.E. Trends in the timing and magnitude of ice-jam floods in Canada. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madaeni, F.; Lhissou, R.; Chokmani, K.; Raymond, S.; Gauthier, Y. Ice jam formation, breakup and prediction methods based on hydroclimatic data using artificial intelligence: A review. Cold Reg. Sci. Technol. 2020, 174, 103032. [Google Scholar] [CrossRef]
- Burrell, B.; Huokuna, M.; Beltaos, S.; Kovachis, N.; Turcotte, B.; Jasek, M. Flood Hazard and Risk Delineation of Ice-Related Floods: Present Status and Outlook. In Proceedings of the 18th CGUHS CRIPE Workshop on the Hydraulics of Ice Covered Rivers, Quebec City, QC, Canada, 18–20 August 2015. [Google Scholar]
- Carson, R.; Beltaos, S.; Groeneveld, J.; Healy, D.; She, Y.; Malenchak, J.; Shen, H.T. Comparative testing of numerical models of river ice jams. Can. J. Civ. Eng. 2011, 38, 669–678. [Google Scholar] [CrossRef]
- US-Army. HEC-2 Water Surface Profiles, Hydrologic Engineering Center. US Army Corps of Engineers, Davis, California. This is the First Version of the Program HEC-2 for Calculating the Hydraulics of Open-Channel Flow; Water Resources Support Center, Hydrologic Engineering Center: Davis, CA, USA, 1990. [Google Scholar]
- Beltaos, S. User’s Manual for the RIVJAM Model; National Water Research Institute Contribution 96-37; National Water Research Institute: Burlington, ON, Canada, 1996. [Google Scholar]
- Healy, D. Hicks, F. Comparison of ICEJAM and RIVJAM ice jam profile models. J. Cold Reg. Eng. 1999, 13, 180–198. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.T.; Wang, D.S.; Lal, A.W. Numerical simulation of river ice processes. J. Cold Reg. Eng. 1995, 9, 107–118. [Google Scholar] [CrossRef]
- EC. RIVICE Model—User’s Manual. 2013. Available online: http://giws.usask.ca/rivice/Manual/RIVICE_Manual_2013-01-11.pdf (accessed on 1 June 2021).
- Liu, L.; Li, H.; Shen, H.T. A two-dimensional comprehensive river ice model. In Proceedings of the 18th IAHR Symposium on River Ice, Sapporo, Japan, 28 August–1 September 2006; Volume 28. [Google Scholar]
- Beltaos, S. Assessing ice-jam flood risk: Methodology and limitations. In Proceedings of the 20th IAHR Inernational Symposium on Ice, Lathi, Finland, 14–18 June 2010; pp. 14–17. [Google Scholar]
- Lindenschmidt, K.-E.; Das, A.; Rokaya, P.; Chu, T. Ice-jam flood risk assessment and mapping. Hydrol. Process. 2016, 30, 3754–3769. [Google Scholar] [CrossRef]
- Alaghmand, S.; Bin Abdullah, R.; Abustan, I.; Eslamian, S. Comparison between capabilities of HEC-RAS and MIKE11 hydraulic models in river flood risk modelling (a case study of Sungai Kayu Ara River basin, Malaysia). Int. J. Hydrol. Sci. Technol. 2012, 2, 270–291. [Google Scholar] [CrossRef]
- Beltaos, S. Comparing the impacts of regulation and climate on ice-jam flooding of the Peace-Athabasca Delta. Cold Reg. Sci. Technol. 2014, 108, 49–58. [Google Scholar] [CrossRef]
- Wolfe, B.B.; Hall, R.I.; Wiklund, J.A.; Kay, M.L. Past variation in Lower Peace River ice-jam flood frequency. Environ. Rev. 2020, 28, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M.D.; Li, S.; Lindsey, D.T.; Sjoberg, W.; Zhou, L.; Sun, D. Mapping, Monitoring, and Prediction of Floods Due to Ice Jam and Snowmelt with Operational Weather Satellites. Remote. Sens. 2020, 12, 1865. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E.; Rokaya, P.; Das, A.; Li, Z.; Richard, D. A novel stochastic modelling approach for operational real-time ice-jam flood forecasting. J. Hydrol. 2019, 575, 381–394. [Google Scholar] [CrossRef]
- Andrishak, R.; Hicks, F. Simulating the effects of climate change on the ice regime of the Peace River. Can. J. Civ. Eng. 2008, 35, 461–472. [Google Scholar] [CrossRef]
- Turcotte, B.; Morse, B.; Pelchat, G. Impact of Climate Change on the Frequency of Dynamic Breakup Events and on the Risk of Ice-Jam Floods in Quebec, Canada. Water 2020, 12, 2891. [Google Scholar] [CrossRef]
- Das, A.; Rokaya, P.; Lindenschmidt, K.E. Ice-jam flood risk assessment and hazard mapping under future climate. J. Water Resour. Plan. Manag. 2020, 146, 04020029. [Google Scholar] [CrossRef]
- Vogel, R.M.; Stedinger, J.R. Flood-Plain delineation in ice jam prone regions. J. Water Resour. Plan. Manag. 1984, 110, 206–219. [Google Scholar] [CrossRef]
- Beltaos, S. Progress in the study and management of river ice jams. Cold Reg. Sci. Technol. 2008, 51, 2–19. [Google Scholar] [CrossRef]
- Kovachis, N.; Burrell, B.C.; Huokuna, M.; Beltaos, S.; Turcotte, B.; Jasek, M. Ice-jam flood delineation: Challenges and research needs. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2017, 42, 258–268. [Google Scholar] [CrossRef]
- Das, A.; Lindenschmidt, K.E. Evaluation of the implications of ice-jam flood mitigation measures. J. Flood Risk Manag. 2021, 14, e12697. [Google Scholar] [CrossRef]
- Doberstein, B.; Fitzgibbons, J.; Mitchell, C. Protect, accommodate, retreat or avoid (PARA): Canadian community options for flood disaster risk reduction and flood resilience. Nat. Hazards 2019, 98, 31–50. [Google Scholar] [CrossRef]
- Wagener, T.; Pianosi, F. What has Global Sensitivity Analysis ever done for us? A systematic review to support scientific advancement and to inform policy-making in earth system modelling. Earth-Sci. Rev. 2019, 194, 1–18. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, H. Global Sensitivity Analysis. In Encyclopedia of GIS; Shekhar, S., Xiong, H., Zhou, X., Eds.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Pianosi, F.; Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 2015, 67, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Lindenschmidt, K.E. Evaluation of the sensitivity of hydraulic model parameters, boundary conditions and digital elevation models on ice-jam flood delineation. Cold Reg. Sci. Technol. 2021, 183, 103218. [Google Scholar] [CrossRef]
- Sheikholeslami, R.; Yassin, F.; Lindenschmidt, K.E.; Razavi, S. Improved understanding of river ice processes using global sensitivity analysis approaches. J. Hydrol. Eng. 2017, 22, 04017048. [Google Scholar] [CrossRef]
- She, Y.; Andrishak, R.; Hicks, F.; Morse, B.; Stander, E.; Krath, C.; Mahabir, C. Athabasca River ice jam formation and release events in 2006 and 2007. Cold Reg. Sci. Technol. 2009, 55, 249–261. [Google Scholar] [CrossRef]
- Antoneshyn, A. Fort McMurray flood damages top $500M. 2020. Available online: https://edmonton.ctvnews.ca/fort-mcmurray-flood-damages-top-500m-1.5051023 (accessed on 9 August 2021).
- Beltaos, S.; Burrell, B.C. Ice-jam model testing: Matapedia River case studies, 1994 and 1995. Cold Reg. Sci. Technol. 2010, 60, 29–39. [Google Scholar] [CrossRef]
- Nezhikhovskiy, R.A. Coefficients of roughness of bottom surface on slush-ice cover. In Soviet Hydrology; American Geophysical Union: Washington, DC, USA, 1964; pp. 127–150. [Google Scholar]
- Lindenschmidt, K.E. RIVICE—A non-proprietary, open-source, one-dimensional river-ice model. Water 2017, 9, 314. [Google Scholar] [CrossRef]
- Doherty, J. Calibration and Uncertainty Analysis for Complex Environmental Models. In Watermark Numerical Computing; Watermark Numerical Computing is the Publisher: Brisbane, Australia, 2015; ISBN 978-0-9943786-0-6. [Google Scholar]
- Gerard, R.; Karpuk, E.W. Probability analysis of historical flood data. J. Hydraul. Div. 1979, 105, 1153–1165. [Google Scholar] [CrossRef]
- White, K.; Beltaos, S. Chapter 9: Development of ice-affected stage frequency curves. Highlands Ranch. In River Ice Break-Up; Water Resources Publications: Littleton, CO, USA, 2008. [Google Scholar]
- IBI and Golder Associates Ltd. Report Feasibility Study—Athabasca River Basins. Prepared for Government of Alberta—Flood Recovery Task Force. 2014. Available online: https://open.alberta.ca/publications/35751 (accessed on 11 August 2021).
- Hall, J.; Boyce, S.; Wang, Y.; Dawson, R.; Tarantola, S.; Saltelli, A. Sensitivity analysis for hydraulic models. J. Hydraul. Eng. 2009, 135, 959–969. [Google Scholar] [CrossRef]
- Thompson, S.A. Hydrology for Water Management; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Stephens, M.A. Introduction to Kolmogorov (1933) on the empirical determination of a distribution. In Breakthroughs in Statistics. Springer Series in Statistics (Perspectives in Statistics); Kotz, G., Johnson, N.L., Eds.; Springer: New York, NY, USA, 1992. [Google Scholar]
- Das, A. Stochastic Modelling Approach to Improve Ice-Jam Flood Risk Management. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2021. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, A.; Lindenschmidt, K.-E. Exploring the Potential of Zoning Regulation for Reducing Ice-Jam Flood Risk Using a Stochastic Modelling Framework. Water 2021, 13, 2202. https://doi.org/10.3390/w13162202
Das A, Lindenschmidt K-E. Exploring the Potential of Zoning Regulation for Reducing Ice-Jam Flood Risk Using a Stochastic Modelling Framework. Water. 2021; 13(16):2202. https://doi.org/10.3390/w13162202
Chicago/Turabian StyleDas, Apurba, and Karl-Erich Lindenschmidt. 2021. "Exploring the Potential of Zoning Regulation for Reducing Ice-Jam Flood Risk Using a Stochastic Modelling Framework" Water 13, no. 16: 2202. https://doi.org/10.3390/w13162202
APA StyleDas, A., & Lindenschmidt, K. -E. (2021). Exploring the Potential of Zoning Regulation for Reducing Ice-Jam Flood Risk Using a Stochastic Modelling Framework. Water, 13(16), 2202. https://doi.org/10.3390/w13162202