Modeling Groundwater-Fed Irrigation and Its Impact on Streamflow and Groundwater Depth in an Agricultural Area of Huaihe River Basin, China
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Development of the Agro-Hydrological Model
3.1.1. Rainfall–Runoff Routing Using the XAJ Model
3.1.2. Modifying Evapotranspiration Routing in the XAJ Model
3.1.3. Modifying Groundwater Routing in the XAJ Model
3.2. Construction of Multi-Objective Functions for Parameter Calibration
3.3. Sensitivity Analysis and Model Calibration
4. Results and Discussion
4.1. Model Sensitivity Analysis, Calibration and Verification
4.2. Estimation of the Groundwater Use for Irrigation
4.3. Correlation between the Groundwater Withdrawal for Irrigation and the Groundwater Level
4.4. Precipitation Effects on Irrigation, Streamflow, and the Groundwater Depth
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). AQUASTAT Main Database; FAO (Food and Agriculture Organization of the United Nations): Rome, Italy, 2016. [Google Scholar]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Maréchal, J.; Dewandel, B.; Ahmed, S.; Galeazzi, L.; Zaidi, F.K. Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J. Hydrol. 2006, 329, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Amri, R.; Zribi, M.; Chabaane, Z.L.; Szczypta, C.; Calvet, J.C.; Boulet, G. FAO-56 dual model combined with multi-sensor remote sensing for regional evapotranspiration estimations. Remote. Sens. 2014, 6, 5387–5406. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Blanco, M.; Lorite, I.; Santos, C. An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions. Agric. Water Manag. 2014, 131, 135–145. [Google Scholar] [CrossRef]
- Alcamo, J.; Flörke, M.; Maerker, M. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J. 2007, 52, 247–275. [Google Scholar] [CrossRef]
- Wada, Y.; Wisser, D.; Bierkens, M.F. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam. 2014, 5, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Wisser, D.; Frolking, S.; Douglas, E.M.; Fekete, B.M.; Schumann, A.H.; Vörösmarty, C.J. The significance of local water resources captured in small reservoirs for crop production—A global-scale analysis. J. Hydrol. 2010, 384, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Liu, J. A GIS-based tool for modelling large-scale crop-water relations. Environ. Model. Softw. 2009, 24, 411–422. [Google Scholar] [CrossRef]
- Lapola, D.M.; Priess, J.A.; Bondeau, A. Modeling the land requirements and potential productivity of sugarcane and jatropha in Brazil and India using the LPJmL dynamic global vegetation model. Biomass Bioenergy 2009, 33, 1087–1095. [Google Scholar] [CrossRef]
- Van Dam, J.C.; Huygen, J.; Wesseling, J.; Feddes, R.; Kabat, P.; van Walsum, P.; Groenendijk, P.; van Diepen, C. Theory of SWAP Version 2.0, Simulation of Water Flow, Solute Transport and Plant Growth in the Soil-Water-Atmosphere-Plant Environment; DLO Winand Staring Centre: Wageningen, The Netherlands, 1997. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Gupta, H.V.; Sorooshian, S.; Rousseau, A.N.; Turcotte, R. Calibration of Watershed Models; American Geophysical Union: Washington, DC, USA, 2004. [Google Scholar]
- Ye, L.; Zhou, J.; Zeng, X.; Guo, J.; Zhang, X. Multi-objective optimization for construction of prediction interval of hydrological models based on ensemble simulations. J. Hydrol. 2014, 519, 925–933. [Google Scholar] [CrossRef]
- Fereidoon, M.; Koch, M. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Sci. Total. Environ. 2018, 630, 502–516. [Google Scholar] [CrossRef]
- Adeyeri, O.; Laux, P.; Arnault, J.; Lawin, A.; Kunstmann, H. Conceptual hydrological model calibration using multi-objective optimization techniques over the transboundary Komadugu-Yobe basin, Lake Chad Area, West Africa. J. Hydrol. Reg. Stud. 2020, 27, 100655. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Gupta, H.; Bastidas, L.A.; Bouten, W.; Sorooshian, S. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Lakshimi, G.; Sudheer, K. Parameterization in hydrological models through clustering of the simulation time period and multi-objective optimization based calibration. Environ. Model. Softw. 2021, 138, 104981. [Google Scholar] [CrossRef]
- Ren-Jun, Z. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar] [CrossRef]
- Mo, X.-G.; Hu, S.; Lin, Z.-H.; Liu, S.-X.; Xia, J. Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Adv. Clim. Chang. Res. 2017, 8, 93–98. [Google Scholar] [CrossRef]
- Wang, Z.L.; Zhang, Q.B.; Li, R. Experimental Study on Hydrology in Huaibei Plain; China University of Science and Technology Press: Shanghai, China, 2011. [Google Scholar]
- Cheng, X.; Yu, M.; Zhang, J. Comparative study on hydrogeological conditions of Huaihe mining area. J. Geogr. Cartogr. 2018, 1. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO (Food and Agriculture Organization of the United Nations): Rome, Italy, 1998. [Google Scholar]
- Yao, C.; Zhang, K.; Yu, Z.; Li, Z.; Li, Q. Improving the flood prediction capability of the Xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph. J. Hydrol. 2014, 517, 1035–1048. [Google Scholar] [CrossRef]
- Song, X.-M.; Kong, F.-Z.; Zhan, C.-S.; Han, J.-W. Hybrid optimization rainfall-runoff simulation based on Xinanjiang model and artificial neural network. J. Hydrol. Eng. 2012, 17, 1033–1041. [Google Scholar] [CrossRef]
- Lu, M.; Li, X. Time scale dependent sensitivities of the XinAnJiang model parameters. Hydrol. Res. Lett. 2014, 8, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Hao, F.; Sun, M.; Geng, X.; Huang, W.; Ouyang, W. Coupling the Xinanjiang model with geomorphologic instantaneous unit hydrograph for flood forecasting in northeast China. Int. Soil Water Conserv. Res. 2015, 3, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Van Diepen, C.; Rappoldt, C.; Wolf, J.; van Keulen, H. Crop Growth Simulation Model WOFOST. Documentation Version 4.1; Centre for World Food Studies: Wageningen, The Netherlands, 1988. [Google Scholar]
- Verianov, A. The Level Drainage Facilities to Control the Irrigation Salinization; China Industry Press: Beijing, China, 1963. [Google Scholar]
- Yeh, P.J.-F.; Eltahir, E.A.B. Representation of water table dynamics in a land surface scheme. Part I: Model development. J. Clim. 2005, 18, 1861–1880. [Google Scholar] [CrossRef]
- Cheng, Q.-B.; Chen, X.; Xu, C.-Y.; Reinhardt-Imjela, C.; Schulte, A. Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov chain Monte Carlo scheme. J. Hydrol. 2014, 519, 2202–2214. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Beven, K.J.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Zhang, C.; Fu, G.; Zhou, H. Quantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibration. J. Hydrol. 2016, 533, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.X.; Ma, L.; Green, T.R.; Yu, Q.; Wang, T.D.; Ahuja, L.R. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options. Agric. Water Manag. 2010, 97, 1102–1116. [Google Scholar] [CrossRef]
Crop | Start and Stop Dates | Length of Crop Growth (day) | Growth Period |
---|---|---|---|
Summer maize | 1 June–20 June | 20 | Sowing-seeding |
21 June–10 July | 20 | Seeding-jointing | |
11 July–10 August | 31 | Jointing-tasseling | |
11 August–30 September | 51 | Tasseling-maturity | |
Winter wheat | 10 October–30 November | 60 | Seeding-tillering |
1 December–8 February | 70 | Tillering-overwintering | |
9 February–16 April | 67 | Green-flowering | |
17 April–30 May | 44 | Flowering-maturity |
Module | Parameters | Meaning of Parameters | Initial Value | Objective Functions | ||
---|---|---|---|---|---|---|
NSEflow | NSEdepth | NSEunion | ||||
Runoff Generation | B | Exponent of the tension water capacity distribution curve | 0.4 | 0.449 | 0.405 | 0.429 |
RN | Vadose zone thickness/m | 1.85 | 1.746 | 1.852 | 2.126 | |
Runoff Separation | SM | Areal mean free water capacity/mm | 15.5 | 13.45 | 13.81 ☆ | 17.37 |
EX | Exponent of the free water storage capacity distribution curve | 1.6 | 1.6 ☆ | 1.6 ☆ | 1.6 ☆ | |
KI | Outflow coefficients of interflow (KI + KG = 0.7) | 0.25 | 0.21 ★ | 0.34 | 0.19 ★ | |
Flow Concentration | EI | Recession constant of interflow storage | 0.88 | 0.88 ☆ | 0.88 ☆ | 0.88 ☆ |
C1 | Muskingum parameter | 0.88 | 0.893 ★ | 0.887 | 0.877 ★ | |
C2 | Muskingum parameter | 0.1 | 0.089 ★ | 0.082 ★ | 0.085 ★ | |
Groundwater Evaporation | n | Coefficient of groundwater evaporation | 1.6 | 1.6 ☆ | 1.58 | 1.6 ☆ |
driv | Maximum cutting depth of river | 1.9 | 2.277 ★ | 2.028 ★ | 1.955 | |
dmax | Critical depth to groundwater | 5 | 4.660 ★ | 4.256 ★ | 4.030 ★ | |
Groundwater reservoir | a | Coefficient for groundwater recharge | 0.6 | 0.493 ★ | 0.488 ★ | 0.659 |
K | Baseflow coefficient | 0.024 | 0.024 ☆ | 0.024 ☆ | 0.024 ☆ | |
QC | Coefficient of groundwater withdrawal amount | 0.65 | 0.633 | 0.746 ★ | 0.743 | |
γ | Gamma curve shape parameter | 2.8 | 2.927 | 3.118 ★ | 3.290 ★ | |
μ | Specific yield | 0.055 | 0.065 ★ | 0.062 ★ | 0.062 ★ | |
The optimal values of objective functions | NSEflow | Calibration period | 0.62 | 0.46 | 0.55 | |
Validation period | 0.51 | 0.18 | 0.40 | |||
NSEdepth | Calibration period | −0.82 | 0.94 | 0.92 | ||
Validation period | −0.13 | 0.69 | 0.58 |
Year | Discharge (m3/s) | Groundwater Depth (m) | ||||||
---|---|---|---|---|---|---|---|---|
Observed Value | Simulation | Observed Value | Simulation | |||||
NSEflow | NSEdepth | NSEunion | NSEflow | NSEdepth | NSEunion | |||
2001 | 1.17 | 2.18 | 3.14 | 1.74 | 3.49 | 3.70 | 3.44 | 3.44 |
2002 | 0.02 | 1.05 | 1.63 | 0.94 | 4.70 | 4.95 | 4.55 | 4.45 |
2003 | 8.28 | 9.66 | 18.73 | 14.32 | 3.46 | 3.61 | 3.38 | 3.35 |
2004 | 13.27 | 16.63 | 12.93 | 16.61 | 2.17 | 2.09 | 2.02 | 2.01 |
2005 | 5.00 | 3.49 | 3.02 | 4.02 | 2.42 | 2.78 | 2.54 | 2.62 |
2006 | 4.23 | 2.97 | 1.92 | 1.71 | 2.58 | 3.16 | 2.79 | 2.94 |
2007 | 4.78 | 4.53 | 5.18 | 3.98 | 2.54 | 3.17 | 2.79 | 2.98 |
2008 | 1.36 | 0.78 | 0.80 | 0.33 | 3.04 | 3.48 | 3.09 | 3.23 |
2009 | 0.75 | 0.70 | 1.08 | 0.42 | 3.27 | 3.57 | 3.17 | 3.32 |
average | 4.31 | 4.66 (8.1%) | 5.38 (24.7%) | 4.90 (13.5%) | 3.07 | 3.39 (10.4%) | 3.09 (0.1%) | 3.15 (2.6%) |
Crop | Project | Initial Stage | Crop Development Stage | Mid-Season Stage | Late Season Stage | Whole Growth Period |
---|---|---|---|---|---|---|
Winter wheat | Growth period (days) | 60 | 70 | 67 | 44 | 241 |
Groundwater withdrawal (mm) | 5 | 4.7 | 81.2 | 49.6 | 140.5 | |
Summer maize | Growth period (days) | 20 | 20 | 31 | 51 | 122 |
Groundwater withdrawal (mm) | 0 | 3 | 6.2 | 4.5 | 13.7 |
Variation of Precipitation (%) | Irrigation Water Requirement (mm) (%) | Groundwater Withdrawal (mm) (%) | Average Annual Groundwater Depth (m) (%) | Average Annual Runoff (mm) (%) |
---|---|---|---|---|
0% | 99.6 | 63.1 | 3.15 | 30.6 |
−1% | 105.3 (5.7%) | 66.7 (5.7%) | 3.21 (1.9%) | 29.1 (−4.9%) |
−3% | 122.3 (22.8%) | 77.4 (22.7%) | 3.30 (4.8%) | 26.9 (−12.1%) |
−5% | 138.8 (39.4%) | 87.9 (39.3%) | 3.43 (8.9%) | 23.3 (−23.9%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Chen, X.; Chen, X.; Yang, L. Modeling Groundwater-Fed Irrigation and Its Impact on Streamflow and Groundwater Depth in an Agricultural Area of Huaihe River Basin, China. Water 2021, 13, 2220. https://doi.org/10.3390/w13162220
Sun Y, Chen X, Chen X, Yang L. Modeling Groundwater-Fed Irrigation and Its Impact on Streamflow and Groundwater Depth in an Agricultural Area of Huaihe River Basin, China. Water. 2021; 13(16):2220. https://doi.org/10.3390/w13162220
Chicago/Turabian StyleSun, Yimeng, Xi Chen, Xi Chen, and Liu Yang. 2021. "Modeling Groundwater-Fed Irrigation and Its Impact on Streamflow and Groundwater Depth in an Agricultural Area of Huaihe River Basin, China" Water 13, no. 16: 2220. https://doi.org/10.3390/w13162220
APA StyleSun, Y., Chen, X., Chen, X., & Yang, L. (2021). Modeling Groundwater-Fed Irrigation and Its Impact on Streamflow and Groundwater Depth in an Agricultural Area of Huaihe River Basin, China. Water, 13(16), 2220. https://doi.org/10.3390/w13162220