Climate and Land Use Change Effects on Sediment Production in a Dry Tropical Forest Catchment
Abstract
:1. Introduction
- (i)
- To analyze the changes in rainfall erosivity, vegetation cover, and soil loss rates as a function of land-use, and ENSO-induced seasonal variations.
- (ii)
- To calibrate the spatially distributed SEDD model, by contrasting it with sediment yield measured at the catchment outlet.
- (iii)
- To apply the SEDD model to estimate the spatial and temporal distribution of sediment yield.
2. Materials and Methods
2.1. Study Area
2.2. Rainfall, Flow Rate, and Sediment Concentration Measurements
- (a)
- Accept the years with more than 95% of daily records (>347 data).
- (b)
- Reject the years with less than 70% of daily records (<256 data).
- (c)
- Accept the years with a percentage of records between 70 and 90%, if their average value falls into the confidence interval (>95%) established using the standard deviation of these.
2.3. Potential Soil Erosion Rate Modelling
2.4. Distributed Sediment Delivery Modeling
3. Results and Discussion
3.1. Observed Runoff and Sediment Loads
3.2. Modeled Potential Soil Erosion Rates
3.3. Modeling Sediment Delivery
3.4. Annual Sediment Delivery in Tonusco River
3.5. Sediment Delivery in Sub-Watershed Tributaries of Tonusco River
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sposito, G. Sustaining “the Genius of Soils”. In The Soil Underfoot; Churchman, G.J., Landa, E.R., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 395–408. [Google Scholar]
- Baffaut, C.; Thompson, A.L.; Duriancik, L.F.; Ingram, K.A.; Norfleet, M.L. Assessing cultivated cropland inherent vulnerability to sediment and nutrient losses with the Soil Vulnerability Index. J. Soil Water Conserv. 2020, 75, 20A–22A. [Google Scholar] [CrossRef] [Green Version]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehmann, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Status of the World’s Soil Resources. Main Report|Policy Support and Governance|Food and Agriculture Organization of the United Nations. 2015. Available online: http://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/435200/ (accessed on 23 February 2021).
- Gleeson, T.; Wang-Erlandsson, L.; Porkka, M.; Zipper, S.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemontese, L.; Gordon, L.J.; et al. Illuminating water cycle modifications and Earth System resilience in the Anthropocene. Water Resour. Res. 2020, 56, e2019WR024957. [Google Scholar] [CrossRef] [Green Version]
- Knott, J.; Mueller, M.; Pander, J.; Geist, J. Effectiveness of catchment erosion protection measures and scale-dependent response of stream biota. Hydrobiologia 2019, 830, 77–92. [Google Scholar] [CrossRef]
- Pandey, A.; Himanshu, S.K.; Mishra, S.K.; Singh, V.P. Physically based soil erosion and sediment yield models revisited. Catena 2016, 147, 595–620. [Google Scholar] [CrossRef]
- Zi, T.; Kumar, M.; Albertson, J. Intercomparing varied erosion, deposition and transport process representations for simulating sediment yield. Sci. Rep. 2019, 9, 12029. [Google Scholar] [CrossRef] [PubMed]
- Gudino-Elizondo, N.; Biggs, T.W.; Bingner, R.L.; Langendoen, E.J.; Kretzschmar, T.; Taguas, E.V.; Taniguchi-Quan, K.T.; Liden, D.; Yuan, Y. Modelling Runoff and Sediment Loads in a Developing Coastal Watershed of the US-Mexico Border. Water 2019, 11, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, Y.J.; Lee, H.Y.; Wang, T.L.; Yu, J.; Lin, Y.T.; Yuan, Y. Modeling Sediment Yields and Stream Stability Due to Sediment-Related Disaster in Shihmen Reservoir Watershed in Taiwan. Water 2019, 11, 332. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Chen, S.; McCool, D.K. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil Tillage Res. 2006, 85, 38–49. [Google Scholar] [CrossRef]
- Ferro, V.; Porto, P. Sediment Delivery Distributed (SEDD) Model. J. Hydrol. Eng. 2000, 5, 411–422. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.; Ma, X. Application of a modified distributed-dynamic erosion and sediment yield model in a typical watershed of a hilly and gully region, Chinese Loess Plateau. Solid Earth 2016, 7, 1577–1590. [Google Scholar] [CrossRef] [Green Version]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Restrepo, J.D.; Kjerfve, B. Magdalena River: Interannual variability (1975–1995) and revised water discharge and sediment load estimates. J. Hydrol. 2000, 235, 137–149. [Google Scholar] [CrossRef]
- Restrepo, J.D. El impacto de la deforestación en la erosión de la cuenca del río Magdalena (1980–2010). Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 2015, 39, 250–267. (In Spanish) [Google Scholar] [CrossRef]
- Restrepo, J.C.; Ortiz, J.; Pierini, J.; Schrottke, K.; Maza, M.; Otero, L.; Aguirre, J. Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and recent changes. J. Hydrol. 2014, 509, 266–281. [Google Scholar] [CrossRef]
- Morera, S.B.; Condom, T.; Crave, A.; Steer, P.; Guyot, J.L. The impact of extreme El Niño events on modern sediment transport along the western Peruvian Andes (1968–2012). Sci. Rep. 2017, 7, 11947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NOAA N.C.P. Climate Prediction Center. 2021. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 30 April 2021).
- Poveda, G.; Jaramillo, L.; Vallejo, L.F. Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res. 2014, 50, 98–118. [Google Scholar] [CrossRef]
- Poveda, G.; Jaramillo, A.; Gil, M.M.; Quiceno, N.; Mantilla, R.I. Seasonally in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res. 2001, 37, 2169–2178. [Google Scholar] [CrossRef]
- Armijos, E.; Laraque, A.; Barba, S.; Bourrel, L.; Ceron, C.; Lagane, C.; Magat, P.; Moquet, J.S.; Pombosa, R.; Sondag, F.; et al. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrol. Sci. J. 2013, 58, 1478–1494. [Google Scholar] [CrossRef] [Green Version]
- Tote, C.; Govers, G.; Kerckhoven, S.V.; Filiberto, I.; Verstraeten, G.; Eerens, H. Effect of ENSO events on sediment production in a large coastal basin in northern Peru. Earth Surf. Proc. Landf. 2011, 36, 1776–1788. [Google Scholar] [CrossRef]
- Murphy, P.G.; Lugo, A.E. Ecology of Tropical Dry Forest. Ann. Rev. Ecol. Syst. 1986, 17, 67–88. [Google Scholar] [CrossRef]
- Blasco, F.; Whitmore, T.C.; Gers, C. A framework for the worldwide comparison of tropical woody vegetation types. Biol. Conserv. 2000, 95, 175–189. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; DAmico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Etter, A.; McAlpine, C.; Wilson, K.; Phinn, S.; Possingham, H. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 2006, 114, 369–386. [Google Scholar] [CrossRef]
- Restrepo, J.D.; Escobar, H.A. Sediment load trends in the Magdalena River basin (1980–2010): Anthropogenic and climate-induced causes. Geomorphology 2018, 302, 76–91. [Google Scholar] [CrossRef]
- Taboada, A.; Rivera, L.A.; Fuenzalida, A.; Cisternas, A.; Philip, H.; Bijwaard, H.; Olaya, J.; Rivera, C. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics 2000, 19, 787–813. [Google Scholar] [CrossRef]
- Suter, F.; Martínez, J.I.; Vélez, M.I. Holocene soft-sediment deformation of the Santa Fe–Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity? Sediment. Geol. 2011, 235, 188–199. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580 (accessed on 6 May 2021).
- Instituto Geográfico Agustín Codazzi (IGAC). Mapa General de Suelos de Colombia (1:1 500 000); IGAC: Bogotá, Colombia, 1983.
- Instituto Alexander von Humboldt. Fortalecimiento al Conocimiento, Conservación y Uso Sostenible de la Biodiversidad y Los Servicios Ecosistémicos del Bosque Seco Tropical en la Jurisdicción de CORANTIOQUIA: Informe Final; Instituto Alexander von Humboldt: Medellín, Colombia, 2014. (In Spanish) [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Duarte, G.F. Análisis de la Variación Temporal de la Carga Sólida Medida en el Río Magdalena en el Sector: Puerto Salgar-La Gloria; IDEAM: Bogotá, Colombia, 2004. (In Spanish)
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook; USDA, ARS: Washington, DC, USA, 1997. Available online: https://agris.fao.org/agris-search/search.do?recordID=XF2015047686 (accessed on 4 May 2021).
- Hoyos, N.; Waylen, P.R.; Jaramillo, Á. Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes. J. Hydrol. 2005, 314, 177–191. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Bubenzer, G.D. Soil Loss LEstimation. In Soil Erosion; Kirkby, M.J., Morgan, R.P.C., Eds.; John Wiley and Sons: London, UK, 1980; pp. 17–62. [Google Scholar]
- IGAC. Geoportal IGAC. 2019. Available online: https://www.igac.gov.co/ (accessed on 19 December 2020).
- Bonilla, C.A.; Johnson, O.I. Soil erodibility mapping and its correlation with soil properties in Central Chile. Geoderma 2012, 189, 116–123. [Google Scholar] [CrossRef]
- Fernández, C.; Wu, J.Q.; McCool, D.K.; Stöckle, C.O. Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD. J. Soil Water Conserv. 2003, 58, 128–136. [Google Scholar]
- van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe—European Environment Agency. 2000. Available online: https://www.eea.europa.eu/data-and-maps/data/external/soil-erosion-risk-assessment-in-europe (accessed on 8 July 2021).
- Carvalho, D.F.; Durigon, V.L.; Antunes, M.A.H.; Almeida, W.S.; Oliveira, P.T.S. Predicting soil erosion using Rusle and NDVI time series from TM Landsat 5′. Pesq. Agropec. Bras. 2014, 49, 215–224. [Google Scholar] [CrossRef] [Green Version]
- USGS. EarthExplorer. 2019. Available online: https://earthexplorer.usgs.gov/ (accessed on 19 December 2020).
- van Rees, E. Exelis Visual Information Solutions. GeoInformatics 2013, 16, 24–25. Available online: https://www.l3harrisgeospatial.com/ (accessed on 12 May 2021).
- Dalezios, N.R.; Gobin, A.; Alfonso, A.M.T.; Eslamian, S. Agricultural Drought Indices: Combining Crop, Climate, and Soil Factors. In Handbook of Drought and Water Scarcity; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef] [Green Version]
- Vanoni, V.A. Sedimentation Engineering. Task Committee for the Preparation of the Manual on Sedimentation of the Sedimentation Committee of the Hydraulic Division of ASCE. Manual 54; Preston V: Reston, VA, USA, 1975. [Google Scholar]
- Williams, J.R. Sediment Routing for Agricultural Watersheds. J. Am. Water Resour. Assoc. 1975, 11, 965–974. [Google Scholar] [CrossRef]
- Boakye, E.; Anyemedu, F.O.K.; Donkor, E.A.; Quaye-Ballard, J.A. Spatial distribution of soil erosion and sediment yield in the Pra River Basin. SN Appl. Sci. 2020, 2, 320. [Google Scholar] [CrossRef] [Green Version]
- di Stefano, C.; Ferro, V.; Minacapilli, M. Testing the SEDD model in Sicilian basins. In Sediment. Budgets 2, Proceedings of the Symposium S1 Held during the Seventh International Association of Hydrological Sciences (IAHS) Scientific Assembly, Foz do Iguaçu, Brazil, 3–9 April 2005; IAHS-AISH Publication: Wallingford, Oxfordshire, 2005; Volume 2, pp. 152–161. [Google Scholar]
- Diwediga, B.; Le, Q.B.; Agodzo, S.K.; Tamene, L.D.; Wala, K. Modelling soil erosion response to sustainable landscape management scenarios in the Mo River Basin (Togo, West Africa). Sci. Total Environ. 2018, 625, 1309–1320. [Google Scholar] [CrossRef]
- Liu, Y.; Zarfl, C.; Basu, N.B.; Schwientek, M.; Cirpka, O.A. Contributions of catchment and in-stream processes to suspended sediment transport in a dominantly groundwater-fed catchment. Hydrol. Earth Syst. Sci. 2018, 22, 3903–3921. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, W.; Geng, X.; Stuecker, M.F.; Liu, C. Impacts of Central Pacific El Niño on Southern China Spring Precipitation Controlled by its Longitudinal Position. J. Clim. Nov. 2019, 32, 7823–7836. [Google Scholar] [CrossRef]
- Restrepo, J.D.; Kettner, A.J.; Syvitski, J.P.M. Recent deforestation causes rapid increase in river sediment load in the Colombian Andes. Anthropocene 2015, 10, 13–28. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Xue, S.Y.; Xu, H.-Y.; Mu, C.-C.; Wu, T.-H.; Li, W.-P.; Zhang, W.-X.; Streletskaya, I.; Grebenets, V.; Sokratov, S.; Kizyakov, A.; et al. Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015. Adv. Clim. Chang. Res. 2021. [Google Scholar] [CrossRef]
- Corrales, L.M.G.; Ávila, H.; Gutierrez, R.R. Land-use and socioeconomic changes related to armed conflicts: A Colombian regional case study. Environ. Sci. Policy 2019, 97, 116–124. [Google Scholar] [CrossRef]
- Lawler, D.M.; Petts, G.E.; Foster, I.D.L.; Harper, S. Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK. Sci. Total Environ. 2006, 360, 109–126. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Heckmann, T.; Cavalli, M.; Cerdan, O.; Foerster, S.; Javaux, M.; Lode, E.; Smetanová, A.; Vericat, D.; Brardinoni, F. Indices of sediment connectivity: Opportunities, challenges and limitations. Earth Sci. Rev. 2018, 187, 77–108. [Google Scholar] [CrossRef] [Green Version]
- Andreoli, R.V.; Kayano, M.T. ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. Int. J. Climatol. 2005, 25, 2017–2030. [Google Scholar] [CrossRef]
- Piña, O.N. Identificación de Correlaciones Entre la Arga de Lavado y Algunos Parámetros Geomorfológicos y de Uso de Suelo en la Cuenca del Río Cauca; Universidad Nacional de Colombia: Bogotá, Colombia, 2015; Available online: http://oatd.org/oatd/record?record=oai%5C%3Awww.bdigital.unal.edu.co%5C%3A51531 (accessed on 1 July 2021). (In Spanish)
- Bracken, L.J.; Turnbull, L.; Wainwright, J.; Bogaart, P. Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surf. Process. Landf. 2015, 40, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Fryirs, K. (Dis)Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surf. Proc. Landf. 2013, 38, 30–46. [Google Scholar] [CrossRef]
- Kettner, A.J.; Restrepo, J.D.; Syvitski, J.P.M. A Spatial Simulation Experiment to Replicate Fluvial Sediment Fluxes within the Magdalena River Basin, Colombia. J. Geol. 2010, 118, 363–379. [Google Scholar] [CrossRef]
- Landholm, D.M.; Pradhan, P.; Kropp, J.P. Diverging forest land use dynamics induced by armed conflict across the tropics. Glob. Environ. Chang. 2019, 56, 86–94. [Google Scholar] [CrossRef]
Stations | Type | Coordinates (UTM) | Records | |
---|---|---|---|---|
X | Y | |||
Cotové | W | 806,138.1 | 1,215,249.5 | 12,691 |
Guasabra | 792,864.5 | 1,209,840.7 | 13,171 | |
Giraldo | 792,898.0 | 1,230,809.9 | 13,473 | |
Buriticá | 797,313.3 | 1,235,292.9 | 13,240 | |
Abriaquí | 779,613.9 | 1,225,348.3 | 13,366 | |
Caicedo | 789,472.9 | 1,201,028.1 | 13,250 | |
La Galera | S | 802,304.7 | 1,216,969.4 | 11,286 |
Classification | NDVI | C Factor |
---|---|---|
Water | <0 | - |
Bare Soil | 0.00–0.10 | 0.25–1.0 |
Light vegetation | 0.11–0.20 | 0.20–0.24 |
Moderate vegetation | 0.21–0.30 | 0.08–0.19 |
Medium vegetation | 0.31–0.40 | 0.030–0.07 |
High vegetation | 0.41–0.50 | 0.026–0.029 |
Dense vegetation | 0.51–0.60 | 0.017–0.025 |
Forest | 0.61–0.75 | 0.0042–0.016 |
Dense Forest | 0.76–1.0 | <0.0041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Montoya, J.P.; Giraldez Cervera, J.V.; Vanwalleghem, T. Climate and Land Use Change Effects on Sediment Production in a Dry Tropical Forest Catchment. Water 2021, 13, 2233. https://doi.org/10.3390/w13162233
García Montoya JP, Giraldez Cervera JV, Vanwalleghem T. Climate and Land Use Change Effects on Sediment Production in a Dry Tropical Forest Catchment. Water. 2021; 13(16):2233. https://doi.org/10.3390/w13162233
Chicago/Turabian StyleGarcía Montoya, Juan Pablo, Juan Vicente Giraldez Cervera, and Tom Vanwalleghem. 2021. "Climate and Land Use Change Effects on Sediment Production in a Dry Tropical Forest Catchment" Water 13, no. 16: 2233. https://doi.org/10.3390/w13162233
APA StyleGarcía Montoya, J. P., Giraldez Cervera, J. V., & Vanwalleghem, T. (2021). Climate and Land Use Change Effects on Sediment Production in a Dry Tropical Forest Catchment. Water, 13(16), 2233. https://doi.org/10.3390/w13162233