A Spatial Integrated SLR Adaptive Management Plan Framework (SISAMP) toward Sustainable Coasts
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Identifying the Types of Coastal Land Cover That Will Be Inundated Due to SLR by 2100
3.1.1. Permanent Inundation Mapping
3.1.2. Coastal Land Cover Exposure Assessment to SLR
3.2. Outlining an SLR Adaptive Management Framework
4. Results
4.1. The Extent of Permanent SLR Inundation
4.2. The Types of Coastal Land That Will Be Inundated Due to SLR by 2100
4.3. A Conceptual Framework of the SLR Adaptation Plan
5. Discussion
5.1. Land Cover SLR Exposure
5.2. Adaptation to Sea-Level Rise
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nerem, R.S.; Chambers, D.P.; Choe, C.; Mitchum, G.T. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geod. 2010, 33 (Suppl. 1), 435–446. [Google Scholar] [CrossRef]
- Cazenave, A.; Dieng, H.; Meyssignac, B.; von Schuckmann, K.; Decharme, B.; Berthier, E. The rate of sea-level rise. Nat. Clim. Chang. 2014, 4, 358–361. [Google Scholar] [CrossRef]
- Ablain, M.; Legeais, J.F.; Prandi, P.; Marcos, M.; Fenoglio-Marc, L.; Dieng, H.B.; Benveniste, J.; Cazenave, A. Satellite Altimetry-Based Sea Level at Global and Regional Scales. Surv. Geophys. 2017, 38, 7–31. [Google Scholar] [CrossRef]
- NASA. Sea Level Change Observation from the Space. 2020. Available online: https://sealevel.nasa.gov/understanding-sea-level/key-indicators/global-mean-sea-level/ (accessed on 10 May 2020).
- Church, J.A.; White, N.J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 2006, 33, L01602. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griggs, G. Coast in Crisis: A Global Challenge; University of California Press: Oakland, CA, USA, 2017; p. 360. [Google Scholar]
- Weeman, K.; Lynch, P. New Study Finds Sea Level Rise Accelerating; NASA: Greenbelt, MD, USA, 2018. Available online: https://climate.nasa.gov/news/2680/new-study-finds-sea-level-rise-accelerating/ (accessed on 1 February 2019).
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Nicholls, R.J. Chapter 2-Adapting to Sea-Level Rise. In Resilience: The Science of Adaptation to Climate Change; Zommers, Z., Alverson, K., Eds.; Elsevier: Oxford, UK, 2018; pp. 13–29. ISBN 978-0-12-811891-7. [Google Scholar] [CrossRef]
- Toimil, A.; Losada, I.J.; Nicholls, R.; Dalrymple, R.A.; Stive, M.J. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 2020, 156, 103611. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Codignotto, J.; Hay, J.; McLean, R.; Ragoonaden, S.; Woodroffe, C.D.; Abuodha, P.A.O.; Arblaster, J.; et al. Coastal systems and low-lying areas. In Climate Change 2007: Vulnerability, Impacts and Adaptation, Contribution of Working Group II to the IPCC Fourth Assessment Report; Parry, M.L., Canziani, O.F., Palutikof, J.P., Van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, e0131375. [Google Scholar] [CrossRef] [Green Version]
- MEA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Hadwen, W.; Capon, S. Navigating from climate change impacts to adaptation actions in coastal ecosystems. In Applied Studies in Climate Adaptation; Sarah, J.P.P., Boulter, L., Barnett, J., David, R., Eds.; Wiley Blackwell: Chichester, UK, 2015; pp. 190–199. [Google Scholar]
- Moser, S.C. Raising the seas, rising to greatness? Meeting the challenge of coastal climate change. In Applied Studies in Climate Adaptation; Palutikof, J.P., Boulter, S.L., Barnett, J., Rissik, D., Eds.; Wiley: Oxford, UK, 2014; pp. 177–180. [Google Scholar]
- Martínez, M.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Merkens, J.-L.; Reimann, L.; Hinkel, J.; Vafeidis, A. Gridded population projections for the coastal 439 zone under the Shared Socioeconomic Pathways. Glob. Planet. Chang. 2016, 145, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Griggs, G.; Davar, L.; Reguero, B.G. Documenting a Century of Coastline Change along Central California and Associated Challenges: From the Qualitative to the Quantitative. Water 2019, 11, 2648. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.; Cozannet, G. Sea level rise and its coastal impacts. Earth’s Future 2013, 2, 15–34. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 341–425, in press. [Google Scholar]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [Green Version]
- Neumann, J.E.; Yohe, G.; Nicholls, R.J.; Manion, M. Sea level rise and its effects on global resources. In Climate Change: Science, Strategies, and amp; Solutions; Claussen, E., Cochran, V.A., Davis, D.P., Eds.; Brill: Boston, MA, USA, 2001; pp. 43–62. [Google Scholar]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef] [PubMed]
- Anthoff, D.; Nicholls, R.; Tol, R. The economic impact of substantial sea-level rise. Mitig. Adapt. Strat. Glob. Chang. 2010, 15, 321–335. [Google Scholar] [CrossRef]
- The World Bank. Climate Risks and Adaptation in Asian Coastal Megacities, A Synthesis Report; The World Bank: Washington, DC, USA, 2010; p. 121. [Google Scholar]
- Hanson, S.; Nicholls, R.; Ranger, N.; Hallegatte, S.; Corfee-Morlot, J.; Herweijer, C.; Chateau, J. A global ranking of port cities with high exposure to climate extremes. Clim. Chang. 2010, 104, 89–111. [Google Scholar] [CrossRef] [Green Version]
- Kron, W. Coasts: The high-risk areas of the world. Nat. Hazards 2013, 66, 1363–1382. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.; Perrette, M.; Nicholls, R.; Tol, R.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef] [Green Version]
- Barnard, P.L.; Erikson, L.H.; Foxgrover, A.C.; Hart, J.A.F.; Limber, P.; O’Neill, A.C.; Van Ormondt, M.; Vitousek, S.; Wood, N.; Hayden, M.K.; et al. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 2019, 9, 4309. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Limber, P.W.; Barnard, P.L.; Vitousek, S.; Erikson, L.H. A model ensemble for projecting multidecadal coastal cliff retreat during the 21st century. J. Geophys. Res. Earth Surf. 2018, 123, 1566–1589. [Google Scholar] [CrossRef]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.; Reef, R.; Vafeidis, A.; et al. Future response of global coastal wetlands to sea-level rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.R.; Barnard, P.L.; Beighley, E.; Cayan, D.R.; Dugan, J.E.; Feng, D.; Hubbard, D.M.; Iacobellis, S.F.; Melack, J.M.; Page, H.M. A multidisciplinary coastal vulnerability assessment for local government focused on ecosystems, Santa Barbara area, California. Ocean Coast. Manag. 2019, 182, 104921. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.J.T.; Nicholls, R.J.; Ragoonaden, S.; Capobianco, M.; Aston, J.; Buckley, E.H. Technological options for adaptation to climate change in coastal zone. J. Coast. Res. 2001, 17, 531–543. [Google Scholar]
- Tol, R.S.J.; Klein, R.J.T.; Nicholls, R.J. Towards Successful Adaptation to sea-level rise along Europe’s Coasts. J. Coast. Res. 2008, 24, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Pettita, C.J.; Russel, A.B.M. A Spatial Decision Support System Framework for Climate Change Adaptation in Victoria. In Proceedings of the XXI Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), Beijing, China, 3–11 July 2008; Volume Xxxvii. Part B2. [Google Scholar]
- Nicholls, R. Planning for the impacts of sea level rise. Oceanography 2011, 24, 144–157. [Google Scholar] [CrossRef]
- Aerts, J.C.; Barnard, P.L.; Botzen, W.; Grifman, P.; Hart, J.F.; De Moel, H.; Mann, A.N.; de Ruig, L.; Sadrpour, N. Pathways to resilience: Adapting to sea level rise in Los Angeles. Ann. N. Y. Acad. Sci. 2018, 1427, 1–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigand, C.; Ardito, T.; Chaffee, C.; Ferguson, W.; Paton, S.; Raposa, K.B.; Vandemoer, C.; Watson, E. A Climate Change Adaptation Strategy for Management of Coastal Marsh Systems. Chesap. Sci. 2017, 40, 682–693. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Bresch, D.N.; Calil, J.; Meliane, I. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS ONE 2018, 13, e0192132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorie, M.; Neumann, J.E.; Sarofim, M.C.; Jones, R.; Horton, R.M.; Kopp, R.E.; Fant, C.; Wobus, C.; Martinich, J.; O’Grady, M.; et al. Modeling coastal flood risk and adaptation response under future climate conditions. Clim. Risk Manag. 2020, 29, 100233. [Google Scholar] [CrossRef]
- Dronkers, J.; Gilbert, J.; Butler, T.E.; Carey, L.W.; Campbell, J.J.; James, J.; McKenzie, E.; Misdorp, C.; Quin, R.; Ries, N.; et al. Strategies for Adaption to Sea Level Rise. Report of the IPCC Coastal Zone Management Subgroup: Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 1990. [Google Scholar]
- Colls, A.; Ash, N.; Ikkala, N. Ecosystem-Based Adaptation: A Natural Response To Climate Change; IUCN: Gland, Switzerland, 2009. [Google Scholar]
- Torlazzi, C.D.; Reguero, B.G.; Cole, A.D.; Lowe, E.; Shope, J.B.; Gibbs, A.E.; Nickel, B.A.; McCall, R.T.; van Dongeren, A.R.; Beck, M.W. Rigorously valuing the role of U.S. coral reefs in coastal hazard risk reduction. Geol. Surv. Open-File Rep. 2019, 42. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Klein, R.J.T.; Tol, R.S.J. Managing coastal vulnerability and climate change: A national to global perspective. In Managing Coastal Vulnerability; McFadden, L., Nicholls, R., Penning-Roswell, E., Eds.; Elsevier: Oxford, UK, 2007; pp. 223–241. [Google Scholar]
- Marino, E. Adaptation privilege and Voluntary Buyouts: Perspectives on ethnocentrism in sea level rise relocation and retreat policies in the US. Glob. Environ. Chang. Hum. Policy Dimens. 2018, 49, 10–13. [Google Scholar] [CrossRef]
- Mach, K.J.; Kraan, C.M.; Hino, M.; Siders, A.R.; Johnston, E.M.; Field, C.B. Managed retreat through voluntary buyouts of flood-prone properties. Sci. Adv. 2019, 5, eaax8995. [Google Scholar] [CrossRef] [Green Version]
- Doberstein, B.; Fitzgibbons, J.; Mitchell, C. Protect, accommodate, retreat or avoid (PARA): Canadian community options for flood disaster risk reduction and flood resilience. Nat. Hazards 2019, 98, 31–50. [Google Scholar] [CrossRef]
- The Arlington Group Planning + Architecture Inc. EBA, a Tetra Tech Company DE Jardine Consulting Sustainability Solutions Group. Sea Level Rise Adaptation Primer: A Toolkit to Build Adaptive Capacity on Canada’s South Coasts; British Columbia Ministry of Environment: Victoria, BC, Canada, 2013; p. 150.
- Klein, R.J.T.; Eriksen, S.E.H.; Næss, L.O.; Hammill, A.; Tanner, T.M.; Robledo, C.; O’Brien, K.L. Portfolio screening to support the mainstreaming of adaptation to climate change into development assistance. Clim. Chang. 2007, 84, 23–44. [Google Scholar] [CrossRef]
- Sietz, D.; Boschutz, M.; Klein, R.J.T.; Lotsch, A. Mainstreaming Climate Adaptation into Development Assistance in Mozambique: Institutional Barriers and Opportunities; Policy Research Working Paper Series 4711; The World Bank: Washington, DC, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.J.T. Climate and development in times of crisis. Clim. Dev. 2009, 1, 3–4. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Hanson, S.; Herweijer, C.; Patmore, N.; Hallegatte, S.; Corfee-Morlot, J.; Château, J.; Muir-Wood, R. Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes; OECD Environment Working Papers; OECD: Paris, France, 2008. [Google Scholar]
- Port and Maritime Organization of Iran (PMO). “Jask County Action Plan” in “Integrated Coastal Zone Management Plan of Hormozgan Province”; PMO: Tehran, Iran, 2018; p. 547. (In Persian) [Google Scholar]
- Ministry of Roads & Urban Development of Iran (MRUD). Makran Shores Development Plan; The Architecture and Urban Planning Department of Ministry of Roads & Urban Development of Iran: Tehran, Iran, 2019. (In Persian)
- NOAA. Relative Sea Level Trend 490-021 Karachi, Pakistan. Center for Operational Oceanographic Products and Services. Available online: https://tidesandcurrents.noaa.gov/sltrends/ (accessed on 1 July 2020).
- Brown, S.; Nicholls, R.J.; Goodwin, P.; Haigh, I.D.; Lincke, D.; Vafeidis, A.T.; Hinkel, J. Quantifying Land and People Exposed to Sea-Level Rise with No Mitigation and 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300. Earth’s Future 2018, 6, 583–600. [Google Scholar] [CrossRef]
- Codiga, D.; Wager, K. Sea-Level Rise and Coastal Land Use in Hawai‘i: A Policy Tool Kit for State and Local Governments; Center for Island Climate Adaptation and Policy: Honolulu, HI, USA, 2011; Available online: http://icap.seagrant.soest.hawaii.edu/icap-publications. (accessed on 10 May 2020).
- Hawaii Climate Change Mitigation and Adaptation Commission. Hawaii Sea Level Rise Vulnerability and Adaptation Report; Prepared by Tetra Tech, Inc. and the State of Hawaii Department of Land and Natural Resources, Office of Conservation and Coastal Lands, under the State of Hawaii Department of Land and Natural Resources Contract No: 64064; Hawaii Climate Change Mitigation and Adaptation Commission: Honolulu, HI, USA, 2017. [Google Scholar]
- NOAA. Method Description (Detailed Method for Mapping Sea Level Rise Inundation; NOAA Office for Coastal Management, Digital Coast: Charleston, SC, USA, 2017. Available online: https://coast.noaa.gov/data/digitalcoast/pdf/slr-inundation-methods.pdf (accessed on 1 August 2020).
- Ports and Maritime Organization of Iran (PMO). Integrated Coastal Zone Management Plan of Hormozgan Province; PMO: Tehran, Iran, 2018. [Google Scholar]
- National Cartographic Center (NCC). Topographic Maps (Scale 1:5000); Cartography and National Atlases Department: Tehran, Iran, 2017.
- Ballu, V.; Bouin, M.-N.; Siméoni, P.; Crawford, W.C.; Calmant, S.; Boré, J.-M.; Kanas, T.; Pelletier, B. Comparing the role of absolute sea-level rise and vertical tectonic motions in coastal flooding, Torres Islands (Vanuatu). Proc. Natl. Acad. Sci. USA 2011, 108, 13019–13022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, T.R.; Fletcher, C.H.; Barbee, M.M.; Romine, B.M.; Lemmo, S.; Delevaux, J.M. Modeling multiple sea level rise stresses reveals up to twice the land at risk compared to strictly passive flooding methods. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romine, B.M.; Habel, S.; Lemmo, S.J.; Pap, R.A.; Owens, T.M.; Lander, M.; Anderson, T.R. Guidance for Using the Sea Level Rise Exposure Area in Local Planning and Permitting Decisions; Prepared by the University of Hawaii Sea Grant College Program with the Hawaii Department of Land and Natural Resources—Office of Conservation and Coastal Lands for the Hawaii Climate Change Mitigation and Adaptation Commission—Climate Ready Hawaii Initiative; Sea Grant Publication TT-20-01; Sea Grant College Program: Honolulu, HI, USA, 2020. [Google Scholar]
- Passeri, D.L.; Hagen, S.C.; Medeiros, S.C.; Bilskie, M.V.; Alizad, K.; Wang, D. The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earth’s Future 2015, 3, 159–181. [Google Scholar] [CrossRef]
- FAO. A Framework for Land Evaluation; Soils Bulletin 32; Food and Agriculture Organization of the United Nations: Rome, Italy, 1976. [Google Scholar]
- Rossiter, D.G. A theoretical framework for land evaluation (with Discussion). Geoderma 1996, 72, 165–202. [Google Scholar] [CrossRef]
- FAO. Guidelines for Land-Use Planning; FAO Development Series 1; Food and Agriculture Organization of the United Nations: Rome, Italy, 1993. [Google Scholar]
- Nazem, A.S.; Ghaedamini, H.; Tavakoli, M. Investigating the climate change diagnostics over the north western parts of the Indian Ocean: The SST analysis for the period 1950–2009. Iran. J. Geophys. 2014, 8, 26–40. (In Persian) [Google Scholar]
- Goharnejad, H.; Shamsai, A.; Hosseini, S.A. Vulnerability assessment of southern coastal areas of Iran to sea level rise: Evaluation of climate change impact. Oceanologia 2013, 55, 611–637. [Google Scholar] [CrossRef] [Green Version]
- Irani, M.; Bavani, M.; Bohluly, A.; Katak, A.; Alizadeh Katak Lahijani, H. Sea Level Rise in Persian Gulf and Oman Sea Due to Climate Change in the Future Periods. Phys. Geogr. Res. Q. 2017, 49, 603–614. (In Persian) [Google Scholar] [CrossRef]
- Enwright, N.M.; Griffith, K.T.; Osland, M.J. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Front. Ecol. Environ. 2016, 14, 307–316. [Google Scholar] [CrossRef]
- Griggs, G.B. The impacts of coastal armoring. Shore Beach. 2005, 73, 13–22. [Google Scholar]
- NOAA (National Oceanic and Atmospheric Administration). What Will Adaptation Cost? An Economic Framework for Coastal Community Infrastructure; Coastal Services Center: Charleston, SC, USA, 2013. Available online: https://coast.noaa.gov/digitalcoast/training/adaptation-pub.html (accessed on 1 July 2020).
- SCI (Statistical Centre of Iran). Iran’s Population and Housing Census-2016; Statistical Centre of Iran: Tehran, Iran, 2016; Available online: https://www.amar.org.ir/english (accessed on 1 June 2020).
- Grazi, F.; van den Bergh, J.C.J.M. Spatial organization, transport, and climate change: Comparing instruments of spatial planning and policy. Ecol. Econ. 2008, 67, 630–639. [Google Scholar] [CrossRef]
- Blanco, H.; McCarney, P.; Parnell, S.; Schmidt, M.; Seto, K.C. The role of urban land in climate change. In Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network; Rosenzweig, C., Solecki, W.D., Hammer, A.S., Mehrotra, S., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 217–248. [Google Scholar]
- Seto, K.C.; Dhakal, S.; Bigio, A.; Blanco, H.; Delgado, G.C.; Dewar, D.; Huang, L.; Inaba, A.; Kansal, A.; Lwasa, S.; et al. Chapter 12—Human settlements, infrastructure and spatial planning. In Climate Change 2014: Mitigation of Climate Change; IPCC Working Group III Contribution to AR5; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Davoudi, S.; Crawford, J.; Mehmood, A. Planning for Climate Change: Strategies for Mitigation and Adaptation for Spatial Planners; Earthscan: London, UK, 2010. [Google Scholar]
- Carter, J.; Sherriff, G. Spatial Planning for Climate Change Adaptation Identifying Crosscutting Barriers and Solutions; University of Manchester, Centre of Urban and Regional Ecology: Manchester, UK, 2011. [Google Scholar]
- Blanco, H.; Alberti, M. Hot, congested, crowded and diverse: Emerging research agendas in planning. Chapter 2: Building capacity to adapt to climate change through planning. Prog. Plan. 2009, 71, 158–169. [Google Scholar] [CrossRef]
- Van der Plank, S.; Brown, S.; Nicholls, R.J. Managing coastal flood risk to residential properties in England: Integrating spatial planning, engineering and insurance. Int. J. Disaster Risk Reduct. 2021, 52, 101961. [Google Scholar] [CrossRef]
- Nicholls, R.J. Adapting to Sea Level Rise. In Coastal and Marine Hazards, Risks, and Disasters; Shroder, J.F., Ellis, J.T., Douglas, J.B.T., Eds.; Elsevier: Boston, MA, USA, 2015; pp. 243–270. [Google Scholar] [CrossRef]
- Butler, W.H.; Deyle, R.E.; Mutnansky, C. Low-Regrets Incrementalism: Land Use Planning Adaptation to Accelerating Sea Level Rise in Florida’s Coastal Communities. J. Plan. Educ. Res. 2016, 36, 319–332. [Google Scholar] [CrossRef]
- Kreft, S.; Warner, K.; Harmeling, S.; Roberts, E. Framing the loss and damage debate: A thought starter by the loss and damage in vulnerable countries initiative. In Climate Change: International Law and Global Governance; Oliver, C.R., Christian, R., Katharina, R.-S., Eds.; Nomos: Baden-Baden, Germany, 2013; pp. 829–842. [Google Scholar]
- Warner, K.; Geest, V.D. Loss and damage from climate change: Local-level evidence from nine vulnerable countries. Int. J. Global Warm. 2013, 5, 367–386. [Google Scholar] [CrossRef]
- Adger, W.N.; Arnell, N.; Tompkins, E. Successful adaptation to climate change across scales. Glob. Environ. Chang. Hum. Policy Dimens. 2005, 15, 77–86. [Google Scholar] [CrossRef]
- Osbahr, H.; Twyman, C.; Adger, W.N.; Thomas, D.G. Successful adaptation: Social networks, institutions and climate change. Ecology Society. 2010, 15, 27. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Marinova, N.; Lowe, J.A.; Brown, S.; Vellinga, P.; De Gusmão, D.; Hinkel, J.; Tol, R.S.J. Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim. Dyn. 2009, 34, 461–472. [Google Scholar] [CrossRef]
- Haasnoot, M.; Kwadijk, J.; Van Alphen, J.; Le Bars, D.; Hurk, B.V.D.; Diermanse, F.; Van Der Spek, A.; Essink, G.O.; Delsman, J.; Mens, M. Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the coastal adaptation strategy of the Netherlands. Environ. Res. Lett. 2020, 15, 34007. [Google Scholar] [CrossRef]
- Mahiny, A.S.; Clarke, K.C. Guiding SLEUTH Land-Use/Land-Cover Change Modeling Using Multicriteria Evaluation: Towards Dynamic Sustainable Land-Use Planning. Environ. Plan. B Plan. Des. 2012, 39, 925–944. [Google Scholar] [CrossRef]
2081–2100 | ||||
---|---|---|---|---|
Scenario | Mean (m) | Likely Range (m) | Sea-Level Rise (m) (Used in this Study) | |
Global Mean Sea-Level Rise (GMSLR) | RCP 2.6 | 0.40 | 0.26 to 0.55 | 0.55 |
RCP 4.5 | 0.47 | 0.32 to 0.63 | 0.63 | |
RCP 6.0 | 0.48 | 0.33 to 0.63 | 0.63 | |
RCP 8.5 | 0.63 | 0.45 to 0.82 | 0.82 |
Tide Gauge | MSL 1 | MHHW 2 | MLHW 3 | MHLW 4 | MLLW 5 |
---|---|---|---|---|---|
(All Values in Meters) | |||||
Darak | 1.76 | 2.77 | 2.07 | 1.42 | 0.73 |
Galak | 1.82 | 2.85 | 2.15 | 1.49 | 0.79 |
Jask | 1.68 | 2.64 | 2.04 | 1.32 | 0.72 |
Sirik | 1.61 | 2.63 | 2.15 | 1.08 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davar, L.; Griggs, G.; Danehkar, A.; Salmanmahiny, A.; Azarnivand, H.; Naimi, B. A Spatial Integrated SLR Adaptive Management Plan Framework (SISAMP) toward Sustainable Coasts. Water 2021, 13, 2263. https://doi.org/10.3390/w13162263
Davar L, Griggs G, Danehkar A, Salmanmahiny A, Azarnivand H, Naimi B. A Spatial Integrated SLR Adaptive Management Plan Framework (SISAMP) toward Sustainable Coasts. Water. 2021; 13(16):2263. https://doi.org/10.3390/w13162263
Chicago/Turabian StyleDavar, Lida, Gary Griggs, Afshin Danehkar, Abdolrassoul Salmanmahiny, Hossein Azarnivand, and Babak Naimi. 2021. "A Spatial Integrated SLR Adaptive Management Plan Framework (SISAMP) toward Sustainable Coasts" Water 13, no. 16: 2263. https://doi.org/10.3390/w13162263
APA StyleDavar, L., Griggs, G., Danehkar, A., Salmanmahiny, A., Azarnivand, H., & Naimi, B. (2021). A Spatial Integrated SLR Adaptive Management Plan Framework (SISAMP) toward Sustainable Coasts. Water, 13(16), 2263. https://doi.org/10.3390/w13162263