Impacts of Mixing Mode on Photocatalytic Reduction of Hexavalent Chromium over Titanium Dioxide Nanomaterial under Various Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
2.3. Experimental Procedures
2.4. Slurry Reactor
3. Results
3.1. Titanium Dioxide Basic Characteristics
3.2. Control Experiment
3.3. Interaction of Wavelength and Hole-Scavenger on Photo-Reduction Efficiency of Cr(VI)
3.4. Effect of Wavelength on Distribution of Chromium Species
3.5. Interaction of Oxygen and Hole-Scavenger on Photo-Reduction Efficiency of Cr(VI)
3.6. Effect of Oxygen on Distribution of Chromium Species
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fellenbery, G. The Chemistry of Pollution; John Wiley and Sons: Chichester, UK, 2000. [Google Scholar]
- Ashokkumar, M. An overview on semiconductor particulate systems for photoproduction of hydrogen. Int. J. Hydrogen Energy 1998, 23, 427–438. [Google Scholar] [CrossRef]
- Chen, D.; Ray, A. Removal of toxic metal ions from wastewater by semiconductor photocatalysts. Chem. Eng. Sci. 2001, 56, 1561–1571. [Google Scholar] [CrossRef]
- Kapoor, P.N.; Uma, S.; Rodriguez, S.; Klabunde, K.J. Aerogel processing of MTi2O5 (M = Mg, Mn, Fe, Co, Zn, Sn) compositions using single source precursors: Synthesis, characterization and photocatalytic behavior. J. Mol. Catal. A Chem. 2005, 229, 145–150. [Google Scholar] [CrossRef]
- Doong, R.A.; Chen, Z.H.; Maithreepala, M.A.; Chang, S.M. The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Res. 2001, 35, 2873–2880. [Google Scholar] [CrossRef]
- Barakat, M.A.; Chen, Y.T.; Huang, C.P. Removal of toxic cyanide and Cu(II) Ions from water by illuminated TiO2 catalyst. Appl. Catal. B Environ. 2004, 53, 13–20. [Google Scholar] [CrossRef]
- Rengaraj, S.; Venkataraj, S.; Yeon, J.W.; Kim, Y.; Li, X.Z.; Pang, G.K. Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl. Catal. B Environ. 2007, 77, 157–165. [Google Scholar] [CrossRef]
- Klosek, S.; Raftery, D. Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J. Phys. Chem. B 2001, 105, 2815–2819. [Google Scholar] [CrossRef]
- Chang, S.M.; Doong, R.A. Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures. J. Phys. Chem. B 2006, 110, 20808–20814. [Google Scholar] [CrossRef]
- Tanaka, K.; Harada, K.; Murata, S. Photocatalytic deposition of metal ions onto TiO2 powder. Sol. Energy 1986, 36, 159–161. [Google Scholar] [CrossRef]
- Herrmann, J.M.; Disdier, J.; Pichat, P. Photocatalytic deposition of silver on powder titania: Consequences for the recovery of silver. J. Catal. 1988, 113, 72–81. [Google Scholar] [CrossRef]
- Prairie, M.R.; Evans, L.R.; Stange, B.M.; Martinez, S.L. An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemicals. Environ. Sci. Technol. 1993, 27, 1776–1782. [Google Scholar] [CrossRef]
- Tennakone, K.; Wijayanthab, K.G. Heavy-metal extraction from aqueous medium with an immobilized TiO2 photocatalyst and a solid sacrificial agent. J. Photochem. Photobiol. A Chem. 1998, 113, 89–92. [Google Scholar] [CrossRef]
- Wang, X.; Pehkonen, S.O.; Ray, A.K. Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts. Electrochim. Acta 2004, 49, 1435–1444. [Google Scholar] [CrossRef]
- Angelidis, T.N.; Koutlemani, M.; Poulios, I. Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO2, in a closed-loop reactor. Appl. Catal. B Environ. 1998, 16, 347–357. [Google Scholar] [CrossRef]
- Khalil, L.B.; Mourad, W.E.; Rophael, M.W. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl. Catal. B Environ. 1998, 17, 267–273. [Google Scholar] [CrossRef]
- Ku, Y.; Jung, I.L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 2001, 35, 135–142. [Google Scholar] [CrossRef]
- Yang, J.K.; Lee, S.M. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis. Chemosphere 2006, 63, 1677–1684. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, S.; Iwai, S.; Yano, J.; Taniguchi, H. Kinetic studies of reductive deposition of copper(II) ions photoassisted by titanium dioxide. J. Phys. Chem. A 2001, 105, 11285–11290. [Google Scholar] [CrossRef]
- Tan, T.; Beydoun, D.; Amal, R. Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J. Photochem. Photobiol. A Chem. 2003, 159, 273–280. [Google Scholar] [CrossRef]
- Tan, T.T.; Beydoun, D.; Amal, R. Photocatalytic reduction of Se(VI) in aqueous solutions in UV/TiO2 system: Kinetic modeling and reaction mechanism. J. Phys. Chem. B 2003, 107, 4296–4303. [Google Scholar] [CrossRef]
- Tan, T.T.; Beydoun, D.; Amal, R. Photocatalytic reduction of Se(VI) in aqueous solutions in UV/TiO2 system: Importance of optimum ratio of reactants on TiO2 surface. J. Mol. Catal. A Chem. 2003, 202, 73–85. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Amal, R.; Beydoun, D. Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chem. Eng. Sci. 2003, 58, 4429–4439. [Google Scholar] [CrossRef]
- Gratzel, M. Energy Resources through Photochemistry and Catalysis; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Testa, J.J.; Grela, M.A.; Litter, M.I. Experimental evidence in favor of an initial one-electron-transfer process in the heterogeneous photocatalytic reduction of chromium (VI) over TiO2. Langmuir 2001, 17, 3515–3517. [Google Scholar] [CrossRef]
- Rabaste, S.; Bellessa, J.; Brioude, A.; Bovier, C.; Plenet, J.C.; Brenier, R.; Marty, O.; Mugnier, J.; Dumas, J. Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities. Thin Solid Films 2002, 416, 242–247. [Google Scholar] [CrossRef]
- Song, S.H.; Wang, X.; Xiao, P. Effect of microstructural features on the electrical properties of TiO2. Mater. Sci. Eng. B 2002, 94, 40–47. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhu, L.; Yu, H.; Tang, H. Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species. J. Hazard. Mater. 2008, 152, 93–99. [Google Scholar] [CrossRef]
- Schrank, S.G.; José, H.J.; Moreira, R.F. Simultaneous photocatalytic Cr(VI) reduction and dye oxidation in a TiO2 slurry reactor. J. Photochem. Photobiol. A Chem. 2002, 147, 71–76. [Google Scholar] [CrossRef]
- Colon, G.; Hidalgo, M.C.; Navio, J.A. Influence of carboxylic acid on the photocatalytic reduction of Cr(VI) using commercial TiO2. Langmuir 2001, 17, 7174–7177. [Google Scholar] [CrossRef]
- Sun, B.; Reddy, E.P.; Smirniotis, P.G. Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis. Environ. Sci. Technol. 2005, 39, 6251–6259. [Google Scholar] [CrossRef]
- Mihailova, B.; Valtchev, V.; Mintova, S.; Konstantinov, L. Vibrational spectra of ETS-4 and ETS-10. Zeolites 1996, 16, 22–24. [Google Scholar] [CrossRef]
- Liu, S.X.; Sun, C.L. Mechanism of silver modification for the enhanced photocatalytic activity of Cr(VI) reduction on TiO2 photocatalyst. Acta Pysico-Chim. Sin. 2004, 20, 355–359. [Google Scholar]
- He, D.P. Study on elimination of Cr(VI) in water by photocatalysis. Appl. Chem. Ind. 2007, 36, 19–21. [Google Scholar]
- Kyung, H.; Lee, J.; Choi, W. Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination. Environ. Sci. Technol. 2005, 39, 2376–2382. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Y.Z.; Zhu, L.H.; Shen, X.T.; Tang, H.Q. Reconsideration to the deactivation of TiO2 catalyst during simultaneous photocatalytic reduction of Cr(VI) and oxidation of salicylic acid. J. Photochem. Photobiol. A Chem. 2009, 201, 121–127. [Google Scholar] [CrossRef]
- Ng, Y.C.; Jei, C.Y.; Shamsuddin, M. Titanosilicate ETS-10 derived from rice husk ash. Microporous and Mesoporous. Materials 2009, 122, 95–200. [Google Scholar]
- Giménez, J.; Aguado, M.A.; Cervera-March, S. Photocatalytic reduction of chromium (VI) with titania powders in a flow system: Kinetics and catalyst activity. J. Mol. Catal. A Chem. 1996, 105, 67–78. [Google Scholar] [CrossRef]
- Hu, J.; Chen, C.; Zhu, X.; Wang, X. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 2009, 162, 1542–1550. [Google Scholar] [CrossRef]
- Di, Z.C.; Ding, J.; Peng, X.J.; Li, Y.H.; Luan, Z.K.; Liang, J. Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 2006, 62, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Radhakrishnan, P.G. Chromium(III) removal from water and wastewater using a carboxylate-functionalized cation exchanger prepared from a lignocellulosic residue. J. Colloid Interface Sci. 2007, 316, 268–276. [Google Scholar] [CrossRef]
- Agrawal, S.G.; Fimmen, R.L.; Chin, Y.P. Reduction of Cr(VI) to Cr(III) by Fe(II) in the presence of fulvic acids and in lacustrine pore water. Chem. Geol. 2009, 262, 328–335. [Google Scholar] [CrossRef]
- Qin, G.; McGuire, M.J.; Blute, N.K.; Seidel, C.; Fong, L. Hexavalent Chromium Removal by Reduction with Ferrous Sulfate, Coagulation, and Filtration: A Pilot-Scale Study. Environ. Sci. Technol. 2005, 39, 6321–6327. [Google Scholar] [CrossRef] [PubMed]
Features | TiO2 (Degussa P25) |
---|---|
Content of titanium oxide | 99% |
Average primary particle size | 21 nm |
Tapped density | approx. 130 gL−1 |
Crystal structure | Anatase:Rutile = 4:1 |
Specific surface area | 47.5 ± 3.7 m2g−1 |
Loss of weight in burning | ≤2.0% |
pH value of aqueous suspended matter | 3.5~4.5 |
Appearance | White powder |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-C.; Dao, K.-C.; Lin, Y.-S.; Cheng, T.-Y.; Chen, K.-F.; Tsai, Y.-P. Impacts of Mixing Mode on Photocatalytic Reduction of Hexavalent Chromium over Titanium Dioxide Nanomaterial under Various Environmental Conditions. Water 2021, 13, 2291. https://doi.org/10.3390/w13162291
Yang C-C, Dao K-C, Lin Y-S, Cheng T-Y, Chen K-F, Tsai Y-P. Impacts of Mixing Mode on Photocatalytic Reduction of Hexavalent Chromium over Titanium Dioxide Nanomaterial under Various Environmental Conditions. Water. 2021; 13(16):2291. https://doi.org/10.3390/w13162291
Chicago/Turabian StyleYang, Chih-Chi, Khanh-Chau Dao, Yo-Sheng Lin, Teng-Yun Cheng, Ku-Fan Chen, and Yung-Pin Tsai. 2021. "Impacts of Mixing Mode on Photocatalytic Reduction of Hexavalent Chromium over Titanium Dioxide Nanomaterial under Various Environmental Conditions" Water 13, no. 16: 2291. https://doi.org/10.3390/w13162291
APA StyleYang, C. -C., Dao, K. -C., Lin, Y. -S., Cheng, T. -Y., Chen, K. -F., & Tsai, Y. -P. (2021). Impacts of Mixing Mode on Photocatalytic Reduction of Hexavalent Chromium over Titanium Dioxide Nanomaterial under Various Environmental Conditions. Water, 13(16), 2291. https://doi.org/10.3390/w13162291