Combined Adsorption and Photocatalytic Degradation for Ciprofloxacin Removal Using Sugarcane Bagasse/N,S-TiO2 Powder Composite
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation Materials
2.2.1. Pretreatment Sugarcane Bagasse
2.2.2. Synthesis of Sugarcane Bagasse/N,S-TiO2 Composite
2.3. Characterization of Materials
2.4. Experimental Approach
3. Results
3.1. Characterization of Materials
3.1.1. XRD
3.1.2. SEM
3.1.3. FT-IR
3.1.4. Photoluminescence
3.2. Elimination of CIP
3.2.1. Adsorption Reaction and Photocatalytic Degradation
3.2.2. Effect of pH
3.2.3. Effect of Dosage
3.2.4. Effect of Initial Concentration
3.3. Reusability of ASB/N,S-TiO2 Composite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kosar Hashemi, Y.; Tavakkoli Yaraki, M.; Ghanbari, S.; Heidarpoor Saremi, L.; Givianrad, M.H. Photodegradation of organic water pollutants under visible light using anatase F, N co-doped TiO2/SiO2 nanocomposite: Semi-pilot plant experiment and density functional theory calculations. Chemosphere 2021, 275, 129903. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Dionysiou, D.D.; Wu, Y.; Zhou, H.; Xue, L.; He, S.; Yang, L. Adsorption of dyestuff from aqueous solutions through oxalic acid-modified swede rape straw: Adsorption process and disposal methodology of depleted bioadsorbents. Bioresour. Technol. 2013, 138, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Homem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices—A review. J. Environ. Manag. 2011, 92, 2304–2347. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yu, D.; Wang, D.; Yang, T.; Li, Z.; Wu, M.; Petru, M.; Crittenden, J. Accelerating Fe(III)/Fe(II) cycle via Fe(II) substitution for enhancing Fenton-like performance of Fe-MOFs. Appl. Catal. B Environ. 2021, 286, 119859. [Google Scholar] [CrossRef]
- Yu, D.; Wang, L.; Yang, T.; Yang, G.; Wang, D.; Ni, H.; Wu, M. Tuning Lewis acidity of iron-based metal-organic frameworks for enhanced catalytic ozonation. Chem. Eng. J. 2021, 404, 127075. [Google Scholar] [CrossRef]
- Yu, D.; Li, L.; Wu, M.; Crittenden, J.C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Appl. Catal. B Environ. 2019, 251, 66–75. [Google Scholar] [CrossRef]
- Hamadanian, M.; Rostami, M.; Jabbari, V. Graphene-supported C–N–S tridoped TiO2 photo-catalyst with improved band gap and charge transfer properties. J. Mater. Sci. Mater. Electron. 2017, 28, 15637–15646. [Google Scholar] [CrossRef]
- García-Muñoz, P.; Carbajo, J.; Faraldos, M.; Bahamonde, A. Photocatalytic degradation of phenol and isoproturon: Effect of adding an activated carbon to titania catalyst. J. Photochem. Photobiol. A Chem. 2014, 287, 8–18. [Google Scholar] [CrossRef]
- Janus, M.; Szyma, K. C-, N- and S-Doped TiO2 Photocatalysts: A Review. Catalysts 2021, 11, 144. [Google Scholar]
- Greenstein, K.E.; Nagorzanski, M.R.; Kelsay, B.; Verdugo, E.M.; Myung, N.V.; Parkin, G.F.; Cwiertny, D.M. Carbon-titanium dioxide (C/TiO2) nanofiber composites for chemical oxidation of emerging organic contaminants in reactive filtration applications. Environ. Sci. Nano 2021, 8, 711–722. [Google Scholar] [CrossRef]
- Khedr, T.M.; El-Sheikh, S.M.; Hakki, A.; Ismail, A.A.; Badawy, W.A.; Bahnemann, D.W. Highly active non-metals doped mixed-phase TiO2 for photocatalytic oxidation of ibuprofen under visible light. J. Photochem. Photobiol. A Chem. 2017, 346, 530–540. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Q.; Zang, S.; Li, J.; Wang, Q. Enhanced photoactivity of Sm, N, P-tridoped anatase-TiO2 nano-photocatalyst for 4-chlorophenol degradation under sunlight irradiation. J. Hazard. Mater. 2013, 261, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Wang, H.; Zhang, Y.; Wang, S.; Liu, X. Fabrication of N doped TiO2/C nanocomposites with hierarchical porous structure and high photocatalytic activity. Microporous Mesoporous Mater. 2019, 288, 109604. [Google Scholar] [CrossRef]
- Praneeth, N.V.S.; Paria, S. Clay-supported anisotropic Au-modified N,S-doped TiO2 nanoparticles for enhanced photocatalytic dye degradation and esterification reactions. New J. Chem. 2020, 44, 2619–2629. [Google Scholar] [CrossRef]
- Surenjan, A.; Sambandam, B.; Pradeep, T.; Philip, L. Synthesis, characterization and performance of visible light active C-TiO2 for pharmaceutical photodegradation. Biochem. Pharmacol. 2017, 5, 757–767. [Google Scholar]
- Setthaya, N.; Chindaprasirt, P.; Yin, S.; Pimraksa, K. TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technol. 2017, 313, 417–426. [Google Scholar] [CrossRef]
- Bel Hadjltaief, H.; Omri, A.; Ben Zina, M.; Da Costa, P.; Galvez, M.E. Titanium Dioxide Supported on Different Porous Materials as Photocatalyst for the Degradation of Methyl Green in Wastewaters. Adv. Mater. Sci. Eng. 2015, 2015, 759853. [Google Scholar] [CrossRef] [Green Version]
- Sayilkan, F.; ASİLTüRK, M.; Şener, Ş.; Erdemoğlu, S.; Erdemoğlu, M.; Sayilkan, H. Hydrothermal synthesis, characterization and photocatalytic activity of nanosized TiO2 based catalysts for rhodamine B degradation. Turk. J. Chem. 2007, 31, 211–221. [Google Scholar]
- Xing, B.; Shi, C.; Zhang, C.; Yi, G.; Chen, L.; Guo, H.; Huang, G.; Cao, J. Preparation of TiO2/Activated Carbon Composites for Photocatalytic Degradation of RhB under UV Light Irradiation. J. Nanomater. 2016, 2016, 393648. [Google Scholar] [CrossRef] [Green Version]
- Khataee, A.; Kayan, B.; Gholami, P.; Kalderis, D.; Akay, S. Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite. Ultrason. Sonochem. 2017, 39, 120–128. [Google Scholar] [CrossRef]
- Kim, J.R.; Kan, E. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst. J. Environ. Manag. 2016, 180, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Sun, S.; Jiang, S.; Wang, H.; Zhang, R.; Liu, Q. Effect of pretreatment on microstructure and photocatalytic activity of kaolinite/TiO2 composite. J. Sol-Gel Sci. Technol. 2018, 87, 676–684. [Google Scholar] [CrossRef]
- Atout, H.; Alvarez, M.G.; Chebli, D.; Bouguettoucha, A.; Tichit, D.; Llorca, J.; Medina, F. Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods. Mater. Res. Bull. 2017, 95, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Tahir, H.; Sultan, M.; Akhtar, N.; Hameed, U.; Abid, T. Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution. J. Saudi Chem. Soc. 2016, 20, S115–S121. [Google Scholar] [CrossRef] [Green Version]
- Anukam, A.; Berghel, J. Biomass Pretreatment and Characterization: A Review. Biomass 2020. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Zhou, Z.; Pahl, O. Preliminary study of ciprofloxacin (cip) removal by potassium ferrate(VI). Sep. Purif. Technol. 2012, 88, 95–98. [Google Scholar] [CrossRef]
- Roy, N.; Alex, S.A.; Chandrasekaran, N.; Mukherjee, A.; Kannabiran, K. A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts. J. Environ. Chem. Eng. 2021, 9, 104796. [Google Scholar] [CrossRef]
- Rakshit, S.; Sarkar, D.; Elzinga, E.J.; Punamiya, P.; Datta, R. Mechanisms of ciprofloxacin removal by nano-sized magnetite. J. Hazard. Mater. 2013, 246–247, 221–226. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Nguyen, H.T.; Pham, T.-D.; Tran, T.D.; Chu, H.T.; Dang, H.T.; Nguyen, V.-H.; Nguyen, K.M.; Pham, T.T.; Van Der Bruggen, B. UV–Visible Light Driven Photocatalytic Degradation of Ciprofloxacin by N,S Co-doped TiO2: The Effect of Operational Parameters. Top. Catal. 2020, 63, 985–995. [Google Scholar] [CrossRef]
- Wei, F.; Ni, L.; Cui, P. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. J. Hazard. Mater. 2008, 156, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.M.; Bayoumy, W.A.; Mansour El-Ashkar, T.Y.; Goher, M.E.; Abdo, M.H. Graphene oxide dispersed in N-TiO2 nanoplatelets and their implication in wastewater remediation under visible light illumination: Photoelectrocatalytic and photocatalytic properties. J. Environ. Chem. Eng. 2019, 7, 102884. [Google Scholar] [CrossRef]
- Kamalakkannan, J.; Chandraboss, V.L.; Prabha, S.; Senthilvelan, S. Activated Carbon Loaded N, S Co-Doped TiO2 Nanomaterial and its Dye Wastewater Treatment. Int. Lett. Chem. Phys. Astron. 2015, 47, 147–164. [Google Scholar] [CrossRef] [Green Version]
- Brindha, A.; Sivakumar, T. Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J. Photochem. Photobiol. A Chem. 2017, 340, 146–156. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Khedr, T.M.; Hakki, A.; Ismail, A.A.; Badawy, W.A.; Bahnemann, D.W. Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Sep. Purif. Technol. 2017, 173, 258–268. [Google Scholar] [CrossRef]
- Hassani, A.; Khataee, A.; Karaca, S.; Karaca, C.; Gholami, P. Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason. Sonochem. 2017, 35, 251–262. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, L.T.; Nguyen, H.T.; Nguyen, K.M.; Pham, T.T.; Bruggen, B.V.d. Combined Adsorption and Photocatalytic Degradation for Ciprofloxacin Removal Using Sugarcane Bagasse/N,S-TiO2 Powder Composite. Water 2021, 13, 2300. https://doi.org/10.3390/w13162300
Nguyen LT, Nguyen HT, Nguyen KM, Pham TT, Bruggen BVd. Combined Adsorption and Photocatalytic Degradation for Ciprofloxacin Removal Using Sugarcane Bagasse/N,S-TiO2 Powder Composite. Water. 2021; 13(16):2300. https://doi.org/10.3390/w13162300
Chicago/Turabian StyleNguyen, Linh Thuy, Hanh Thi Nguyen, Khai Manh Nguyen, Thuy Thi Pham, and Bart Van der Bruggen. 2021. "Combined Adsorption and Photocatalytic Degradation for Ciprofloxacin Removal Using Sugarcane Bagasse/N,S-TiO2 Powder Composite" Water 13, no. 16: 2300. https://doi.org/10.3390/w13162300
APA StyleNguyen, L. T., Nguyen, H. T., Nguyen, K. M., Pham, T. T., & Bruggen, B. V. d. (2021). Combined Adsorption and Photocatalytic Degradation for Ciprofloxacin Removal Using Sugarcane Bagasse/N,S-TiO2 Powder Composite. Water, 13(16), 2300. https://doi.org/10.3390/w13162300