Ensemble Projection of Future Climate and Surface Water Supplies in the North Saskatchewan River Basin above Edmonton, Alberta, Canada
Abstract
:1. Introduction
2. MESH Model and Input Data
2.1. Study Area
2.2. MESH Land Surface Hydrological Model
- The hydrological routing, using the semi-distributed hydrological model WATFLOOD [27], accumulates overland flow and interflow from each grid cell at a given time step and routes them through the drainage system to the basin outlet.
Drainage Database
2.3. Hydrological Data
2.4. Forcing Data
2.4.1. Historical Climate Data
2.4.2. Future Climate Data
3. Methods of Statistical Analysis and MESH Model Optimization
3.1. Statistical Analysis
3.2. MESH Model Optimization
4. Results
4.1. Climate Projections
4.1.1. Projected Changes in Near/Far Future Climates
4.1.2. Projected Changes in Annual and Seasonal Precipitation
4.1.3. Projected Changes in Extreme Temperature and Precipitation
4.2. MESH Modeling and Future Flows of NSRB at Edmonton
4.2.1. Calibration and Validation of the MESH Model
4.2.2. Projected Changes in Streamflow
4.2.3. Projected Changes in Extreme Streamflow
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.; Bishop, K.; Zarnetske, J.; Minaudo, C.; Chapin, F.; Krause, S.; Hannah, D.; Conner, L.; Ellison, D.; Godsey, S.; et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 2019, 12, 533–540. [Google Scholar] [CrossRef]
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. Freshwater Resources. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 229–269. [Google Scholar]
- Marvel, K.; Cook, B.; Bonfils, C.; Durack, P.; Smerdon, J.; Williams, A. Twentieth-century hydroclimate changes consistent with human influence. Nature 2019, 569, 59–65. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Peters, D.L.; Seglenieks, F.; Rivera, A.; Berg, A. Changes in Freshwater Availability across Canada. Chapter 6 in Canada’s Changing Climate Report; Bush, E., Lemmen, D.S., Eds.; Government of Canada: Ottawa, ON, Canada, 2019; pp. 261–342.
- Mudryk, L.; Derksen, C.; Howell, S.; Laliberté, F.; Thackeray, C.; Sospedra-Alfonso, R.; Vionnet, V.; Kushner, P.; Brown, R. Canadian snow and sea ice: Historical trends and projections. Cryosphere 2018, 12, 1157–1176. [Google Scholar] [CrossRef] [Green Version]
- Burn, D.; Abdul Aziz, O.; Pietroniro, A. A Comparison of Trends in Hydrological Variables for Two Watersheds in the Mackenzie River Basin. Can. Water Resour. J./Rev. Can. Ressour. Hydr. 2004, 29, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Rood, S.; Samuelson, G.; Weber, J.; Wywrot, K. Twentieth-century decline in streamflows from the hydrographic apex of North America. J. Hydrol. 2005, 306, 215–233. [Google Scholar] [CrossRef]
- Donahue, W.; Allen, E.; Schindler, D. Impacts of Coal-Fired Power Plants on Trace Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in Lake Sediments in Central Alberta, Canada. J. Paleolimnol. 2006, 35, 111–128. [Google Scholar] [CrossRef]
- St-Jacques, J.; Andreichuk, Y.; Sauchyn, D.; Barrow, E. Projecting Canadian Prairie Runoff for 2041–2070 with North American Regional Climate Change Assessment Program (NARCCAP) Data. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 660–675. [Google Scholar] [CrossRef]
- Yip, Q.; Burn, D.; Seglenieks, F.; Pietroniro, A.; Soulis, E. Climate Impacts on Hydrological Variables in the Mackenzie River Basin. Can. Water Resour. J./Rev. Can. Ressour. Hydr. 2012, 37, 209–230. [Google Scholar] [CrossRef] [Green Version]
- Peters, D.; Atkinson, D.; Monk, W.; Tenenbaum, D.; Baird, D. A multi-scale hydroclimatic analysis of runoff generation in the Athabasca River, western Canada. Hydrol. Process. 2013, 27, 1915–1934. [Google Scholar] [CrossRef]
- Bawden, A.; Linton, H.; Burn, D.; Prowse, T. A spatiotemporal analysis of hydrological trends and variability in the Athabasca River region, Canada. J. Hydrol. 2014, 509, 333–342. [Google Scholar] [CrossRef]
- Sauchyn, D.; Davidson, D.; Johnston, M.; Flannigan, M.; Fletcher, A.; Isaac, K.; Kulshreshta, S.; Kowalczyk, T.; Mauro, I.; Pittman, J.; et al. The Prairie Provinces. In Natural Resources Canada 2020, Canada in a Changing Climate: Advancing Our Knowledge for Action; Natural Resources Canada: Ottawa, ON, Canada, 2020. [Google Scholar]
- Golder Associates. Water Supply Assessment for the North Saskatchewan River Basin; North Saskatchewan Watershed Alliance: Edmonton, AB, Canada, 2008. [Google Scholar]
- Anis, M.; Andreichuk, Y.; Kerr, S.; Sauchyn, D. Climate Change Risks to Water Security in Canada’s Western Interior. In Hydrological Aspects of Climate Change; Pandey, A., Kumar, S., Eds.; Springer Transactions in Civil and Environmental Engineering; Springer: Singapore, 2021; pp. 25–60. ISBN 978-981-16-0394-5_2. [Google Scholar]
- Kienzle, S.; Nemeth, M.; Byrne, J.; MacDonald, R. Simulating the hydrological impacts of climate change in the upper North Saskatchewan River basin, Alberta, Canada. J. Hydrol. 2012, 412–413, 76–89. [Google Scholar] [CrossRef]
- Barrow, E.; Sauchyn, D. Uncertainty in climate projections and time of emergence of climate signals in the western Canadian Prairies. Int. J. Climatol. 2019, 39, 4358–4371. [Google Scholar] [CrossRef]
- Sauchyn, D.; Vanstone, J.; Perez-Valdivia, C. Modes and Forcing of Hydroclimatic Variability in the Upper North Saskatchewan River Basin Since 1063. Can. Water Resour. J./Rev. Can. Ressour. Hydr. 2011, 36, 205–217. [Google Scholar] [CrossRef]
- Sauchyn, D.; Vanstone, J.; St. Jacques, J.; Sauchyn, R. Dendrohydrology in Canada’s western interior and applications to water resource management. J. Hydrol. 2015, 529, 548–558. [Google Scholar] [CrossRef]
- Sauchyn, D.; Ilich, N. Nine Hundred Years of Weekly Streamflows: Stochastic Downscaling of Ensemble Tree-Ring Reconstructions. Water Resour. Res. 2017, 53, 9266–9283. [Google Scholar] [CrossRef]
- Tennant, C.; Menounos, B. Glacier change of the Columbia Icefield, Canadian Rocky Mountains, 1919–2009. J. Glaciol. 2013, 59, 671–686. [Google Scholar] [CrossRef] [Green Version]
- Pietroniro, A.; Fortin, V.; Kouwen, N.; Neal, C.; Turcotte, R.; Davison, B.; Verseghy, D.; Soulis, E.; Caldwell, R.; Evora, N.; et al. Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale. Hydrol. Earth Syst. Sci. 2007, 11, 1279–1294. [Google Scholar] [CrossRef] [Green Version]
- Verseghy, D.; McFarlane, N.; Lazare, M. Class—A Canadian land surface scheme for GCMS, II. Vegetation model and coupled runs. Int. J. Climatol. 1993, 13, 347–370. [Google Scholar] [CrossRef]
- Verseghy, D. Class-A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol. 2007, 11, 111–133. [Google Scholar] [CrossRef]
- Mekonnen, M.; Wheater, H.; Ireson, A.; Spence, C.; Davison, B.; Pietroniro, A. Towards an improved land surface scheme for prairie landscapes. J. Hydrol. 2014, 511, 105–116. [Google Scholar] [CrossRef]
- Soulis, E.; Snelgrove, K.; Kouwen, N.; Seglenieks, F.; Verseghy, D. Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme class with the distributed hydrological model watflood. Atmos.-Ocean. 2000, 38, 251–269. [Google Scholar] [CrossRef]
- Kouwen, N.; Soulis, E.; Pietroniro, A.; Donald, J.; Harrington, R. Grouped Response Units for Distributed Hydrologic Modeling. J. Water Resour. Plan. Manag. 1993, 119, 289–305. [Google Scholar] [CrossRef]
- Green Kenue Reference Manual; Canadian Hydraulics Centre of the National Research Council: Ottawa, ON, Canada, 2010.
- Torrence, C.; Compo, G. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Asong, Z.; Elshamy, M.; Princz, D.; Wheater, H.; Pomeroy, J.; Pietroniro, A.; Cannon, A. High-resolution meteorological forcing data for hydrological modelling and climate change impact analysis in the Mackenzie River Basin. Earth Syst. Sci. Data. 2020, 12, 629–645. [Google Scholar] [CrossRef] [Green Version]
- Asong, Z.; Wheater, H.; Pomeroy, J.; Pietroniro, A.; Elshamy, M. WFDEI-GEM-CaPA: A Bias-Corrected 3-hourly 0.125 Gridded Meteorological Forcing Data Set (1979–2016) for Land Surface Modeling in North America; Federated Research Data Repository: Saskatoon, SK, Canada, 2018. [Google Scholar]
- Cannon, A. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2017, 50, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Scinocca, J.; Kharin, V.; Jiao, Y.; Qian, M.; Lazare, M.; Solheim, L.; Flato, G.; Biner, S.; Desgagne, M.; Dugas, B. Coordinated Global and Regional Climate Modeling. J. Clim. 2015, 29, 17–35. [Google Scholar] [CrossRef]
- Davison, B.; Pietroniro, A.; Fortin, V.; Leconte, R.; Mamo, M.; Yau, M. What is Missing from the Prescription of Hydrology for Land Surface Schemes? J. Hydrometeorol. 2016, 17, 2013–2039. [Google Scholar] [CrossRef]
- Haghnegahdar, A.; Razavi, S.; Yassin, F.; Wheater, H. Multicriteria sensitivity analysis as a diagnostic tool for understanding model behaviour and characterizing model uncertainty. Hydrol. Process. 2017, 31, 4462–4476. [Google Scholar] [CrossRef]
- Matott, L. OSTRICH: An Optimization Software Tool, Documentation and User’s Guide; Version 17.12.19; University at Buffalo Center for Computational Research: New York, NY, USA, 2017; 79p. [Google Scholar]
- Fyfe, J.; Derksen, C.; Mudryk, L.; Flato, G.; Santer, B.; Swart, N.; Molotch, N.; Zhang, X.; Wan, H.; Arora, V.; et al. Large Near-Term Projected Snowpack Loss over the Western United States. Nat. Commun. 2017, 8, 14996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturm, M.; Goldstein, M.; Parr, C. Water and life from snow: A trillion dollar science question. Water Resour. Res. 2017, 53, 3534–3544. [Google Scholar] [CrossRef]
Parameters Type | Variable | Description | Lower Limit | Upper Limit |
---|---|---|---|---|
Vegetation Parameters | LNZ0 | Natural logarithm of the roughness length | −3.0 | 0.90 |
LAMX | Annual maximum leaf area index | 3.0 | 6.0 | |
ALVC | Average visible albedo when fully leafed | 0.04 | 0.2 | |
RSMN | Minimum stomatal resistance | 60 | 110 | |
CMAS | Annual maximum canopy mass | 2.0 | 10.0 | |
ROOT | Annual maximum root depth | 0.2 | 4.0 | |
QA50 | Reference value of shortwave radiation | 10.0 | 50.0 | |
VPDA | Vapor pressure deficit coefficient “A” | 0.2 | 0.8 | |
VPDB | Vapor pressure deficit coefficient “B” | 0.7 | 1.3 | |
MANN | Manning’s ‘n’ | 0.02 | 2.0 | |
Soil Hydraulic Parameters | SDEP | Depth of the soil column | 0.1 | 4.1 |
DDEN | Drainage density | 2.0 | 100.0 | |
KSAT | Saturated surface soil conductivity | 0.001 | 0.01 | |
Soil Texture Parameters | CLAY | Percent content of clay in the mineral soil | 10.0 | 50.0 |
SAND | Percent content of sand in the mineral soil | 10.0 | 50.0 | |
Hydrology Parameters | R2N | Channel Manning | 0.02 | 0.5 |
R1N | Overbank Manning | 0.02 | 0.5 | |
PWR | Baseflow exponent of lower zone function | 0.6 | 3.0 | |
FLZ | Baseflow lower zone function | 6.0 × 10−6 | 6.0 × 10−3 |
Near Future (1981–2010)-(2021–2050) | Far Future (1981–2010)-(2051–2080) | |||||
---|---|---|---|---|---|---|
Tmin | Tmax | Precp (%) | Tmin | Tmax | Precp (%) | |
Annual | 2.28 | 1.99 | 11.85 | 4.45 | 3.95 | 20.50 |
Winter | 2.72 | 2.08 | 14.38 | 5.17 | 3.92 | 26.92 |
Spring | 1.66 | 1.26 | 21.90 | 3.41 | 2.74 | 43.32 |
Summer | 2.63 | 2.78 | 2.59 | 5.09 | 5.44 | 0.62 |
Fall | 2.12 | 1.83 | 18.89 | 4.15 | 3.72 | 33.13 |
MK Trend Test | MK Statistic | Normalized Test Statistic | p-Value | Sen’s Slope | 95% Confidence Interval | |||
---|---|---|---|---|---|---|---|---|
(S) | (Z) | Min | Max | |||||
Precp | Annual | Increasing | 7163 | 11.64 | 2.20 × 10−16 | 1.3421 | 1.2061 | 1.4730 |
Winter | Increasing | 6595 | 10.72 | 2.20 × 10−16 | 0.2510 | 0.2161 | 0.2870 | |
Spring | Increasing | 7837 | 12.73 | 2.20 × 10−16 | 0.6177 | 0.5586 | 0.6708 | |
Summer | No trend | −25 | −0.04 | 0.9689 | −0.0026 | −0.0997 | 0.1016 | |
Fall | Increasing | 7317 | 11.89 | 2.20 × 10−16 | 0.4030 | 0.3600 | 0.4491 | |
Tmax | Annual | Increasing | 269,116 | 10.57 | 2.20 × 10−16 | 0.0042 | 0.0036 | 0.0049 |
Winter | Increasing | 917 | 3.19 | 0.0014 | 0.0164 | 0.0066 | 0.0282 | |
Spring | Increasing | 425 | 1.48 | 0.1395 | 0.0118 | −0.0030 | 0.0321 | |
Summer | Increasing | 1065 | 3.71 | 0.0002 | 0.0221 | 0.0121 | 0.0315 | |
Fall | Increasing | 351 | 1.22 | 0.2225 | 0.0117 | −0.0105 | 0.0294 | |
Tmin | Annual | Increasing | 304,433 | 11.95 | 2.00 × 10−17 | 0.0049 | 0.0042 | 0.0055 |
Winter | Increasing | 101 | 0.35 | 0.7274 | 0.0021 | −0.0094 | 0.0127 | |
Spring | Increasing | 593 | 2.06 | 0.0391 | 0.0146 | 0.0005 | 0.0339 | |
Summer | Increasing | 1175 | 4.09 | 4.28 × 10−5 | 0.0197 | 0.0110 | 0.0290 | |
Fall | Decreasing | −152 | −0.53 | 0.5987 | −0.0035 | −0.0222 | 0.0105 |
Goodness-of-Fit | Calibration (February 1995–December 2002) | Validation (Januaray 2003–December 2010) |
---|---|---|
Nash–Sutcliffe efficiency (NSE) | 0.69 | 0.67 |
Log of Nash–Sutcliffe efficiency (lnNSE) | 0.50 | 0.32 |
Percent error (PERR) | 4.11 | −2.25 |
Percent model bias (PBIAS) | 4.11 | 2.25 |
Coefficient of determination (R2) | 0.72 | 0.68 |
RMSE-to-SD Ratio (RSR) | 0.56 | 0.59 |
RUNOFF | Base Period (1951−2010) | Future Period (2041−2100) | % Change |
---|---|---|---|
Annual | 927.79 | 1104.55 | 19.05 |
Winter | 11.69 | 57.07 | 388.21 |
Spring | 164.52 | 443.49 | 169.57 |
Summer | 619.27 | 469.05 | −24.26 |
Fall | 132.31 | 134.94 | 1.98 |
RUNOFF | MK Trend Test | MK Statistic | Normalized Test Statistic | p-Value | Sen’s Slope | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
(S) | (Z) | Min | Max | ||||
Annual | Increasing | 4585 | 7.45 | 9.41 × 10−14 | 0.4277 | 0.3256 | 0.5277 |
Winter | Increasing | 9339 | 15.17 | 2.20 × 10−16 | 0.4087 | 0.3586 | 0.4639 |
Spring | Increasing | 8801 | 14.30 | 2.20 × 10−16 | 2.9701 | 2.7070 | 3.2243 |
Summer | Decreasing | −6709 | −10.90 | 2.20 × 10−16 | −1.8512 | −2.0956 | −1.6151 |
Fall | Decreasing | −585 | −0.95 | 0.3426 | −0.0478 | −0.1386 | 0.0479 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anis, M.R.; Sauchyn, D.J. Ensemble Projection of Future Climate and Surface Water Supplies in the North Saskatchewan River Basin above Edmonton, Alberta, Canada. Water 2021, 13, 2425. https://doi.org/10.3390/w13172425
Anis MR, Sauchyn DJ. Ensemble Projection of Future Climate and Surface Water Supplies in the North Saskatchewan River Basin above Edmonton, Alberta, Canada. Water. 2021; 13(17):2425. https://doi.org/10.3390/w13172425
Chicago/Turabian StyleAnis, Muhammad Rehan, and David J. Sauchyn. 2021. "Ensemble Projection of Future Climate and Surface Water Supplies in the North Saskatchewan River Basin above Edmonton, Alberta, Canada" Water 13, no. 17: 2425. https://doi.org/10.3390/w13172425
APA StyleAnis, M. R., & Sauchyn, D. J. (2021). Ensemble Projection of Future Climate and Surface Water Supplies in the North Saskatchewan River Basin above Edmonton, Alberta, Canada. Water, 13(17), 2425. https://doi.org/10.3390/w13172425