The World of Edges in Submerged Vegetated Marine Canopies: From Patch to Canopy Scale
Abstract
:1. Introduction
2. Materials and Methods
3. The Structural Shallow Limit of Canopies
3.1. Characteristics of the Shallow Limit of Canopies
3.2. Hydrodynamics in the Shallow Limit of Canopies
3.3. Sediment Transport in the Shallow Limit of Canopies
4. The Structural Deep Limit of Canopies
Characteristics of the Deep Limit of Canopies
5. The Structural Patch
5.1. Characteristics of the Edges of Patches
5.2. Hydrodynamics in the Edges of Patches
5.3. Sediment Transport in the Edges of Patches
5.4. Habitat Structures in the Edges of Patches
6. The Structural Edges in Gaps within Canopies
6.1. Characteristics of the Edges in Gaps within Canopies
6.2. Hydrodynamics of the Edges in Gaps within Canopies
6.3. Habitat Structures of the Edges in Gaps within Canopies
7. Discussion
7.1. The Impact of Edges on Submerged Marine Canopies
7.2. The Knowledge of Edges on Submerged Marine Canopies for Coastal Management
7.3. Suggestions for Further Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abal, E.G.; Dennison, W.C. Seagrass Depth Range and Water Quality in Southern Moreton Bay, Queensland, Australia. Mar. Fresh. Res. 1996, 47, 763–771. [Google Scholar] [CrossRef]
- Leriche, A.; Pasqualini, V.; Boudouresque, C.F.; Bernard, G.; Bonhomme, P.; Clabaut, P.; Denis, J. Spatial, Temporal and Structural Variations of a Posidonia oceanica Seagrass Meadow Facing Human Activities. Aquat. Bot. 2006, 84, 287–293. [Google Scholar] [CrossRef]
- Barsanti, M.; Delbono, I.; Ferretti, O.; Peirano, A.; Bianchi, C.N.; Morri, C. Measuring Change of Mediterranean Coastal Biodiversity: Diachronic Papping of the Meadow of the Seagrass Cymodocea nodosa (Ucria) Ascherson in the Gulf of Tigullio (Ligurian Sea, NW Mediterranean). Hydrobiologia 2007, 580, 35–41. [Google Scholar] [CrossRef]
- Valero, M.; Tena, J.; Torres, J.; Royo, M. Estudio de la Pradera de Posidonia oceanica (L.) Delile del Área Litoral del Municipio de Teulada (Alicante). Nereis 2009, 2, 29–39. [Google Scholar]
- Van De Koppel, J.; Bouma, T.J.; Herman, P.M.J. The Influence of Local-and Landscape-scale Processes on Spatial Self-organization in Estuarine ecosystems. J. Exp. Biol. 2015, 215, 962–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montefalcone, M.; Vacchi, M.; Archetti, R.; Ardizzone, G.; Astruch, P.; Bianchi, C.N.; Calvo, S.; Criscoli, A.; Fernández-Torquemada, Y.; Luzzu, F.; et al. Geospatial Modelling and Map Analysis Alowed Measuring Regression of the Upper Limit of Posidonia oceanica Seagrass Meadows under Human Pressure. Estuar. Coast. Shelf Sci. 2019, 217, 148–157. [Google Scholar] [CrossRef]
- Duarte, C.M. Seagrass depth limits. Aquat. Bot. 1991, 40, 363–377. [Google Scholar] [CrossRef]
- Tigny, V.; Ozer, A.; De Falco, G.; Baroli, M.; Djenidi, S. Relationship between the Evolution of the Shoreline and the Posidonia oceanica Meadow Limit in a Sardinian Coastal Zone. J. Coast. Res. 2007, 23, 787–793. [Google Scholar] [CrossRef]
- Ettinger, C.L.; Voerman, S.E.; Lang, J.M.; Stachowicz, J.J.; Eisen, J.A. Microbial Communities in Sediment from Zostera marina Patches, but not the Z. marina Leaf or Root Microbiomes, Vary in Relation to Distance from Patch Edge. PeerJ 2017, 5, e3246. [Google Scholar] [CrossRef] [Green Version]
- Boudouresque, C.-F.; Blanfuné, A.; Pergent, G.; Thibaut, T. Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical Review of Effectiveness and Ethical Issues. Water 2021, 13, 1034. [Google Scholar] [CrossRef]
- Chung, H.; Mandel, T.; Zarama, F.; Koseff, J.R. Local and NonLocal Impacts of Gaps on Submerged Canopy Flow. Water Resour. Res. 2021, 57, e2019WR026915. [Google Scholar] [CrossRef]
- Zhu, L.; Zou, Q.; Huguenard, K.; Fredriksson, D.W. Mechanisms for the Asymmetric Motion of Submerged Aquatic Vegetation in Waves: A Consistent-Mass Cable Model. J. Geophys. Res. Oceans 2020, 125, e2019JC015517. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Zou, Q. Wave-driven Flow Induced by Suspended and Submerged Canopies. Adv. Water Resour. 2019, 123, 160–172. [Google Scholar] [CrossRef]
- Hu, K.; Chen, Q.; Wang, H.; Hartig, E.K.; Orton, P.M. Numerical Modeling of Salt Marsh Morphological Change Induced by Hurricane Sandy. Coast. Eng. 2018, 132, 63–81. [Google Scholar] [CrossRef]
- Madsen, J.D.; Chambers, P.A.; James, W.F.; Koch, E.W.; Westlake, D.F. The Interaction Between Water Movement, Sediment Dynamics and Submersed Macrophytes. Hydrobiologia 2001, 444, 71–84. [Google Scholar] [CrossRef]
- Verdura, J.; Santamarís, J.; Ballesteros, E.; Smale, D.A.; Cefalì, M.E.; Golo, R.; de Caralt, S.; Vergés, A.; Cebrian, E. Local-scale Climatic Refugia Offer Sanctuary for a Habitat-forming Species during a Marine Heatwave. J. Ecol. 2021, 109, 1758–1773. [Google Scholar] [CrossRef]
- Granata, T.C.; Serra, T.; Colomer, J.; Casamitjana, X.; Duarte, C.M.; Gacia, E. Flow and Particle Distributions in a Nearshore Seagrass Meadow Before and After a Storm. Mar. Ecol. Prog. Ser. 2001, 218, 95–106. [Google Scholar] [CrossRef]
- Lera, S.; Nardin, W.; Sanford, L.; Palinkas, C.; Guercio, R. The Impact of Submersed Aquatic Vegetation on the Development of River Mouth Bars. Earth Surf. Process. Landf. 2019, 44, 1494–1506. [Google Scholar] [CrossRef]
- Bell, S.S.; Brooks, R.A.; Robbins, B.D.; Fonseca, M.S.; Hall, M.O. Faunal Response to Fragmentation in Seagrass Habitats: Implications for Seagrass Conservation. Biol. Conserv. 2001, 100, 115–123. [Google Scholar] [CrossRef]
- Montefalcone, M.; Parravicini, V.; Vacchi, M.; Albertelli, G.; Ferrari, M.; Morri, C.; Bianchi, C.N. Human Influence on Seagrass Habitat Fragmentation in NW Mediterranean Sea. Estuar. Coast. Shelf Sci. 2010, 86, 292–298. [Google Scholar] [CrossRef]
- Donatelli, C.; Ganju, N.K.; Kalra, T.S.; Fagherazzi, S.; Leonardi, N. Changes in Hydrodynamics and Wave Energy as a Result of Seagrass Decline along the Shoreline of a Microtidal Back-barrier Estuary. Adv. Water Resour. 2019, 128, 183–192. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, S.H.; Kim, Y.K.; Park, J.-I.; Lee, K.-S. Growth Dynamics of the Seagrass Zostera japonica at its Upper and Lower Distributional Limits in the Intertidal Zone. Estuar. Coast. Shelf. Sci. 2016, 175, 1–9. [Google Scholar] [CrossRef]
- Hastings, K.; Hesp, P.; Kendrick, G.A. Seagrass Loss Associated with Boat Moorings at Rottnest Island, Western Australia. Ocean Coast. Manag. 1995, 26, 225–246. [Google Scholar] [CrossRef]
- Abadie, A.; Lejeune, P.; Pergent, G.; Gobert, S. From Mechanical to Chemical Impact of Anchoring in Seagrasses: The Premises of Anthropogenic Patch Generation in Posidonia oceanica Meadows. Mar. Pollut. Bull. 2016, 109, 61–71. [Google Scholar] [CrossRef]
- Ardizzone, G.; Belluscio, A.; Maiorano, L. Long-term Change in the Structure of a Posidonia oceanica Landscape and its Reference for a Monitoring Plan. Mar. Ecol. 2006, 27, 299–309. [Google Scholar] [CrossRef]
- Demers, M.C.A.; Davis, A.R.; Knott, N.A. A Comparison of the Impact of ‘Seagrass-friendly’ Boat Mooring Systems on Posidonia australis. Mar. Environ. Res. 2013, 83, 54–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abadie, A.; Richir, J.; Lejeune, P.; Leduc, M.; Gobert, S. Structural Changes of Seagrass Seascapes Driven by Natural and Anthropogenic Factors: A Multidisciplinary Approach. Front. Ecol. Evol. 2019, 7, 190. [Google Scholar] [CrossRef] [Green Version]
- Holon, F.; Boissery, P.; Guilbert, A.; Freschet, E.; Deter, J. The Impact of 85 Years of Coastal Development on Shallow Seagrass Beds (Posidonia oceanica L. (Delile)) in South Eastern France: A Slow but Steady Loss without Recovery. Estuar. Coast. Shelf. Sci. 2015, 165, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Hovel, K.A.; Duffy, J.E.; Stachowicz, J.J.; Reynolds, P.; Boström, C.; Boyer, K.E.; Cimon, S.; Cusson, M.; Fodrie, F.J.; Gagnon, K.; et al. Joint Effects of Patch Edges and Habitat Degradation on Faunal Predation Risk in a Widespread Marine Foundation Species. Ecology 2021, 102, e03316. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.C.; Hovel, K.A. Relative Influence of Habitat Complexity and Proximity to Patch Edges on Seagrass Epifaunal Communities. Oikos 2010, 119, 1299–1311. [Google Scholar] [CrossRef]
- Abadie, A.; Borges, A.V.; Champenois, W.; Gobert, S. Natural Patches in Posidonia oceanica Meadows: The Seasonal Biogeochemical Pore Water Characteristics of Two Edge Types. Mar. Biol. 2017, 164, 166. [Google Scholar] [CrossRef] [Green Version]
- Cornacchia, L.; Licci, S.; Nepf, H.; Folkard, A.; van der Wal, D.; van de Koppel, J.; Puijalon, S.; Bouma, T.J. Turbulence-mediated facilitation of resource uptake in patchy stream macrophytes. Limnol. Oceanogr. 2019, 2, 714–727. [Google Scholar] [CrossRef]
- Telesca, L.; Belluscio, A.; Criscoli, A.; Ardizzone, G.; Apostolaki, E.T.; Fraschetti, S.; Gristina, M.; Knittweis, L.; Martin, C.S.; Pergent, G.; et al. Seagrass Meadows (Posionia oceanica) Distribution and Trajectories of Change. Sci. Rep. 2015, 5, 12505. [Google Scholar] [CrossRef] [Green Version]
- Koch, E.W.; Beer, S. Tides, Light and the Distribution of Zostera marina in Long Island Sound, USA. Aquat. Bot. 1996, 53, 97–107. [Google Scholar] [CrossRef]
- Pergent-Martini, C.; Leoni, V.; Pasqualini, V.; Ardizzone, G.D.; Balestri, E.; Bedini, R.; Belluscio, A.; Belsher, T.; Borg, J.; verdurachen, C.F.; et al. Descriptors of Posidonia oceanica Meadows: Use and Application. Ecol. Indicat. 2005, 5, 213–230. [Google Scholar] [CrossRef]
- Montefalcone, M.; Bianchi, C.N.; Morri, C.; Peirano, A.; Albertelli, G. Lower Limit Typology and Functioning of Six Posidonia oceanica Meadows in the Ligurian Sea (NW Mediterranean). Biol. Mar. Mediterr. 2006, 13, 262–266. [Google Scholar]
- Montefalcone, M. Ecosystem Health Assessment Using the Seagrass Posidonia oceanica: A Review. Ecol. Indicat. 2009, 9, 595–604. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Bernard, G.; Bonhomme, P.; Charbonnel, E.; Diviacco, G.; Meinesz, A.; Pergent, G.; Pergent-Martini, C.; Ruitton, S.; Tunesi, L. Protection and Conservation of Posidonia oceanica Meadows; RaMoGe Publication: Monaco, 2012; p. 202. [Google Scholar]
- Marbà, N.; Díaz-Almela, E.; Duarte, C.M. Mediterranean Seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol. Conserv. 2014, 176, 183–190. [Google Scholar] [CrossRef]
- Folkard, A.M. Hydrodynamics of Model Posidonia oceanica Patches in Shallow Water. Limnol. Oceanogr. 2005, 50, 1592–1600. [Google Scholar] [CrossRef]
- Infantes, E.; Terrados, J.; Orfila, A.; Canellas, B.A.; Alvarez-Ellacuria, A. Wave Energy and the Upper Depth Limit Distribution of Posidonia oceanica. Bot. Mar. 2009, 52, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Vacchi, M.; Montefalcone, M.; Bianchi, C.N.; Morri, C.; Ferrari, M. The Influence of Coastal Dynamics on the Upper Limit of the Posidonia oceanica Meadow. Mar. Ecol. 2010, 31, 546–554. [Google Scholar] [CrossRef]
- Vacchi, M.; Misson, G.; Montefalcone, M.; Archetti, R.; Bianchi, C.N.; Ferrari, M. Modelling Reference Conditions for the Upper Limit of Posidonia oceanica Meadows. Rapports de la Commission Internationale pour l’Exploration Scientifique de la Mer. Mediterranée 2013, 40, 579. [Google Scholar]
- Vacchi, M.; De Falco, G.; Simeone, S.; Montefalcone, M.; Bianchi, C.N.; Morri, C.; Ferrari, M. Biogeomorphology of the Mediterranean Posidonia oceanica Meadows. Earth Surf. Process. Landf. 2017, 42, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Graham, M.H. Factors Determining the Upper Limit of Giant Kelp, Macrocystis pyrifera Agardh, along the Monterey Peninsula, Central California, USA. J. Exp. Mar. Biol. Ecol. 1997, 218, 127–149. [Google Scholar] [CrossRef]
- Ralph, P.J.; Durako, M.J.; Enríquez, S.; Collier, C.J.; Doblin, M.A. Impact of Light Limitation on Seagrasses. J. Exp. Mar. Biol. Ecol. 2007, 350, 176–193. [Google Scholar] [CrossRef]
- Pergent, G.; Pergent-Martini, C.; Bein, A.; Dedeken, M.; Oberti, P.; Orsini, A.; Santucci, J.-F.; Short, F. Dynamic of Posidonia oceanica Seagrass Meadows in the Northwestern Mediterranean: Could Climate Change be to Blame? C. R. Biol. 2015, 338, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Serra, T.; Gracias, N.; Hendriks, I.E. Fragmentation in Seagrass Canopies Can Alter Hydrodynamics and Sediment Deposition Rates. Water 2020, 12, 3473. [Google Scholar] [CrossRef]
- Pace, M.; Borg, J.A.; Galdies, C.; Malhotra, A. Influence of Wave Climate on Architecture and Landscape Characteristics of Posidonia oceanica Meadows. Mar. Ecol. 2017, 38, e12387. [Google Scholar] [CrossRef] [Green Version]
- Barcelona, A.; Colomer, J.; Soler, M.; Gracias, N.; Serra, T. Meadow Fragmentation Influences Posidonia oceanica Density at the Edge of Nearby Gaps. Estuar. Coast. Shelf. Sci. 2021, 249, 107106. [Google Scholar] [CrossRef]
- Mayot, N.; Boudouresque, C.F.; Charbonnel, E. Changes Over Time of Shoot Density of the Mediterranean Seagrass Posidonia oceanica at its Depth Limit. Biol. Mar. Medit. 2006, 13, 250–254. [Google Scholar]
- Colomer, J.; Soler, M.; Serra, T.; Casamitjana, X.; Oldham, C. Impact of Anthropogenically Created Canopy Gaps on Wave Attenuation in a Posidonia oceanica Seagrass Meadow. Mar. Ecol. Prog. Ser. 2017, 569, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Gnisci, V.; Martiis, S.C.; Belmonte, A.; Micheli, C.; Piermattei, V.; Bonamano, S.; Marcelli, M. Assessment of the Ecological Structure of Posidonia oceanica (L.) Delile on the Northern Coast of Lazio, Italy (Central Tyrrhenian, Mediterranean). Ital. Bot. 2020, 9, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sweatman, J.L.; Layman, C.A.; Fourqurean, J.W. Habitat Fragmentation has Some Impacts on Aspects of Ecosystem Functioning in a Sub-tropical Seagrass Bed. Mar. Environ. Res. 2017, 126, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Adhitya, A.; Folkard, A.M.; Govers, L.L.; van Katwijk, M.M.; de Iongh, H.H.; Herman, P.M.J.; Bouma, T.J. The Exchange of Dissolved Nutrients Between the Water Column and Substrate Pore-water Due to Hydrodynamic Adjustment at Seagrass Meadow Edges: A Flume Study. Limnol. Oceanogr. 2016, 61, 2286–2295. [Google Scholar] [CrossRef] [Green Version]
- Tanner, J.E. Patch Shape and Orientation Influences on Seagrass Epifauna are Mediated by Dispersal Abilities. Oikos 2003, 100, 517–524. [Google Scholar] [CrossRef]
- Folkard, A.M. Biophysical Interactions in Fragmented Canopies: Fundamental Processes, Consequences, and Upscaling. Front. Mar. Sci. 2019, 6, 279. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, M.; Whitfield, P.E.; Kelly, N.M.; Bell, S.S. Modeling Seagrass Landscape Pattern and Associated Ecological Attributes. Ecol. Applic. 2002, 12, 218–237. [Google Scholar] [CrossRef]
- Kolasa, J. Ecological Boundaries: A Derivative of Ecological Entities. Web Ecol. 2014, 14, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Schoelynck, J.; Creëlle, S.; Buis, K.; De Mulder, T.; Emsens, W.-J.; Hein, T.; Meire, D.; Meire, P.; Okruszko, T.; Preiner, S.; et al. What is a Macrophyte Patch? Patch Identification in Aquatic Ecosystems and Guidelines for Consistent Delineation. Ecohydrol. Hydrobiol. 2018, 18, 1–9. [Google Scholar] [CrossRef]
- Duarte, C.M.; Marbà, N.; Krause-Jensen, D.; Sánchez-Camacho, M. Testing the Predictive Power of Seagrass Depth Limit Models. Estuaries Coast. 2007, 30, 652. [Google Scholar] [CrossRef]
- Nielsen, S.L.; Sand-Jensen, K.; Borum, J.; Geertz-Hansen, O. Depth Colonization of Eelgrass (Zostera marina) and Macroalgae as Determined by Water Transparency in Danish Coastal Waters. Estuaries 2002, 25, 1025–1032. [Google Scholar] [CrossRef]
- Gerakaris, V.; Papathanasiou, V.; Salomidi, M.; Issaris, Y.; Panayotidis, P. Spatial Patterns of Posidonia oceanica Structural and Functional Features in the Eastern Mediterranean (Aegean and E. Ionian Seas) in Relation to Large-scale Environmental Factors. Mar. Environ. Res. 2021, 165, 105222. [Google Scholar] [CrossRef] [PubMed]
- La Loggia, G.; Calvo, S.; Ciraolo, G.; Mazzola, A.; Pirrotta, M.; Sara, G.; Tomasello, A.; Vizzini, S. Influence of Hydrodynamic Conditions on the Production and Fate of Posidonia oceanica in a Semi-enclosed Shallow Basin (Stagnone di Marsala, WesternSicily). Chem. Ecol. 2004, 20, 183–201. [Google Scholar] [CrossRef]
- Manzanera, M.; Alcoverro, T.; Tomás, F.; Romero, J. Response of Posidonia oceanica to Burial Dynamics. Mar. Ecol. Prog. Ser. 2011, 423, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, M.; Montefalcone, M.; Schiaffino, C.F.; Bianchi, C.N.; Corradi, N.; Morri, C.; Vacchi, M. Geomorphological constraint and boundary effect on Posidonia oceanica meadows. Rend. Online Soc. Geol. Ital. 2013, 28, 62–65. [Google Scholar]
- Vacchi, M.; Montefalcone, M.; Schiaffino, C.; Parravicini, V.; Bianchi, C.N.; Morri, C.; Ferrari, M. Towards a Predictive Model to Assess the Natural Position of the Posidonia oceanica Seagrass Meadow Upper Limit. Mar. Pollut. Bull. 2014, 83, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Madonia, A.; Caporale, G.; Penna, M.; Bonamano, S.; Marcelli, M. Assessment of the Photosynthetic Response of Posidonia oceanica (Linneaus) Delile, 1813 along a Depth Gradient in the Northern Tyrrhenian Sea (Latium, Italy). Geosciences 2021, 11, 202. [Google Scholar] [CrossRef]
- Boumaza, S.; Boudefoua, N.; Boumaza, R.; Semroud, R. Effects of Urban Effluents on Spatial Structure, Morphology and Total Phenols of Posidonia oceanica: Comparison with a Reference Site. J. Exp. Mar. Biol. Ecol. 2014, 457, 113–119. [Google Scholar] [CrossRef]
- Bulleri, F.; Pardi, G.; Tamburello, L.; Ravaglioli, C. Nutrient Enrichment Stimulates Herbivory and Alters Epibiont Assemblages at the Edge but not Inside Subtidal Macroalgal Forests. Mar. Biol. 2020, 167, 181. [Google Scholar] [CrossRef]
- Short, F.T.; Neckles, H.A. The Effects of Global Climate Change on Seagrasses. Aquat. Bot. 1999, 63, 169–196. [Google Scholar] [CrossRef]
- Ruju, A.; Ibba, A.; Porta, M.; Buosi, C.; Passarella, M.; De Muro, S. The Role of Hydrodynamic Forcing, Sediment Transport Processes and Bottom Substratum in the Shoreward Development of Posidonia oceanica Meadow. Estuar. Coast. Shelf. Sci. 2018, 212, 63–72. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Bernard, G.; Pergent, G.; Shili, A.; Verlaque, M. Regression of Mediterranean Seagrasses Caused by Natural Processes and Anthropogenic Disturbances and Stress: A Critical Review. Bot. Mar. 2009, 52, 395–418. [Google Scholar] [CrossRef]
- Marbà, N.; Duarte, C.M. Mediterranean Warming Triggers Seagrass (Posidonia oceanica) Shoot Mortality. Glob. Chang. Biol. 2010, 16, 2366–2375. [Google Scholar] [CrossRef]
- González-Correa, J.M.; Sánchez Lizaso, J.L.; Fernández Torquemada, Y.; Forcada, A. Long-term Population Dynamics in a Healthy Posidonia oceanica Meadow. Thalassas 2015, 31, 63–72. [Google Scholar]
- Gruber, R.K.; Kemp, W.M. Feedback Effects in a Coastal Canopy-forming Submersed Plant Bed. Limnol. Oceanogr. 2010, 55, 2285–2298. [Google Scholar] [CrossRef]
- Chen, S.N.; Sanford, L.P.; Koch, E.W.; Shi, F.; North, E.W. A Nearshore Model to Investigate the Effects of Seagrass Bed Geometry on Wave Attenuation and Suspended Sediment Transport. Estuar. Coasts 2007, 30, 296–310. [Google Scholar] [CrossRef]
- Zubak, I.; Cizmek, H.; Mokos, M. Posidonia oceanica Lower Depth Limits along a Latitudinal Gradient in the Eastern Adriatic Sea. Bot. Mar. 2020, 63, 209–214. [Google Scholar] [CrossRef]
- Krause-Jensen, D.; Carstensen, J.; Nielsen, S.L.; Dalsgaard, T.; Christensen, P.B.; Fossing, H.; Rasmussen, M.B. Sea Bottom Characteristics Affect Depth Limits of Eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 2011, 425, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Greve, T.M.; Krause-Jensen, D. Predictive Modelling of Eelgrass (Zostera marina) Depth Limits. Mar. Biol. 2005, 146, 849–858. [Google Scholar] [CrossRef]
- Poklar, M.; Grubar, V.B. The Changes of Seagrass Meadows on the Semedela Bay Seabed in the Period 2009–2015. Geogr. Vestn. 2018, 90, 71–86. [Google Scholar] [CrossRef]
- Riemann, B.; Carstensen, J.; Dahl, K.; Fossing, H.; Hansen, J.W.; Jakobsen, H.H.; Josefson, A.B.; Krause-Jensen, D.; Markager, S.; Stæhr, P.A.; et al. Recovery of Danish Coastal Ecosystems after Reductions in Nutrient Loading: A Holistic Ecosystem Approach. Estuar. Coasts 2016, 39, 82–97. [Google Scholar] [CrossRef] [Green Version]
- Abadie, A.; Gobert, S.; Bonacorsi, M.; Lejeune, P.; Pergent, G.; Pergent-Martini, C. Marine space ecology and seagrasses. Does patch type matters in Posidonia oceanica seascape? Ecol. Indic. 2015, 57, 435–446. [Google Scholar] [CrossRef]
- Cebrián, J.; Pedersen, M.F.; Kroeger, K.D.; Valiela, I. Fate of Production of the Seagrass Cymodocea nodosa in Different Stages of Meadow Formation. Mar. Ecol. Prog. Ser. 2000, 204, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Balestri, E.; Vallerini, F.; Lardicci, C. Recruitment and Patch Establishment by Seed in the Seagrass Posidonia oceanica: Importance and Conservation Implications. Front. Plant Sci. 2017, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Stubler, A.D.; Jackson, L.J.; Furman, B.T.; Peterson, B.J. Seed Production Patterns in Zostera marina: Effects of Patch Size and Landscape Configuration. Estuaries Coast. 2017, 40, 564–572. [Google Scholar] [CrossRef]
- Livernois, M.C.; Grabowski, J.H.; Poray, A.K.; Gouhier, T.C.; Hughes, A.R.; O’Brien, K.F.; Yeager, L.A.; Fodrie, F.J. Effects of Habitat Fragmentation on Zostera marina Seed Distribution. Aquat. Bot. 2017, 142, 1–9. [Google Scholar] [CrossRef]
- Méndez, F.J.; Losada, I.J.; Losada, M.A. Hydrodynamics Induced by Wind Waves in a Vegetation Field. J. Geophys. Res. Oceans 1999, 104, 18383–18396. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, C.; Nepf, H. Flow Adjustment at the Leading Edge of a Submerged Aquatic Canopy. Water Resour. Res. 2013, 49, 5537–5551. [Google Scholar] [CrossRef]
- Sand-Jensen, K.; Mebus, J.R. Fine-scale Patterns of Water Velocity within Macrophyte Patches in Streams. Oikos 1996, 76, 169–180. [Google Scholar] [CrossRef]
- Sand-Jensen, K.; Pedersen, M.L. Streamlining of Plant Patches in Streams. Fresh. Biol. 2008, 53, 714–726. [Google Scholar] [CrossRef]
- Lefebvre, A.; Thompson, C.E.L.; Amos, C.L. Influence of Zostera marina Canopies on Unidirectional Flow, Hydraulic Roughness and Sediment Movement. Cont. Shelf Res. 2010, 30, 1783–1794. [Google Scholar] [CrossRef]
- Manca, E.; Cáceres, I.; Alsina, J.M.; Stratigaki, V.; Townend, I.; Amos, C.L. Wave Energy and Wave-induced Flow Reduction by Full-scale Model Posidonia oceanica Seagrass. Cont. Shelf Res. 2012, 50, 100–116. [Google Scholar] [CrossRef]
- Paul, M.; Gillis, L.G. Let it Flow: How Does an Underlying Current Affect Wave Propagation over a Natural Seagrass Meadow? Mar. Ecol. Prog. Ser. 2015, 523, 57–70. [Google Scholar] [CrossRef]
- Bryan, K.R.; Tay, H.W.; Pilditch, C.A.; Lundquist, C.J.; Hunt, H.L. The Effects of Seagrass (Zostera muelleri) on Boundary-layer Hydrodynamics in Whangapoua Estuary, New Zealand. J. Coast. Res. 2007, 50, 668–672. [Google Scholar]
- Zong, L.; Nepf, H. Spatial Distribution of Deposition within a Patch of Vegetation. Water Resour. Res 2011, 47, W03516. [Google Scholar] [CrossRef]
- Bradley, K.; Houser, C. Relative Velocity of Seagrass Blades: Implications for Wave Attenuation in Low-energy Environments. J. Geophys. Res. Earth Surf. 2009, 114, 1–13. [Google Scholar] [CrossRef]
- Hamed, A.M.; Peterlein, A.M.; Speck, I. Characteristics of the Turbulent Flow within Short Canopy Gaps. Phys. Rev. Fluids 2020, 5, 123801. [Google Scholar] [CrossRef]
- Paquier, A.-E.; Meulé, S.; Anthony, E.J.; Larroudé, P.; Bernard, G. Wind-Induced Hydrodynamic Interactions With Aquatic Vegetation in a Fetch-Limited Setting: Implications for Coastal Sedimentation and Protection. Estuar. Coasts 2019, 42, 688–707. [Google Scholar] [CrossRef]
- Koftis, T.; Prinos, P.; Stratigaki, V. Wave Damping over Artificial Posidonia oceanica Meadow: A Large-scale Experimental Study. Coast. Eng. 2013, 73, 71–83. [Google Scholar] [CrossRef]
- Hansen, J.C.R.; Reidenback, M.A. Wave and Tidally Driven Flows in Eelgrass Beds and Their Effect on Sediment Suspension. Mar. Ecol. Prog. Ser. 2012, 448, 271–287. [Google Scholar] [CrossRef] [Green Version]
- Barcelona, A.; Oldham, C.; Colomer, J.; Serra, T. Functional Dynamics of Vegetated Model Patches: The Minimum Patch Size Effect for Canopy Restoration. Sci. Total Environ. 2021, 148854. [Google Scholar] [CrossRef]
- Licci, S.; Nepf, H.; Delolme, C.; Marmonier, P.; Bouma, T.J.; Puijalon, S. The Role of Patch Size in Ecosystem Engineering Capacity: A Case Study of Aquatic Vegetation. Aquat. Sci. 2019, 81, 41. [Google Scholar] [CrossRef]
- Ma, G.; Han, Y.; Niroomandi, A.; Lou, S.; Liu, S. Numerical Study of Sediment Transport on a Tidal Flat with a Patch of Vegetation. Ocean Dyn. 2015, 65, 203–222. [Google Scholar] [CrossRef]
- Brun, F.G.; Pérez-Lloréns, J.L.; Hernández, I.; Vergara, J.J. Patch Distribution and Within-Patch Dynamics of the Seagrass Zostera noltii Hornem. in Los Toruños Salt-Marsh, Cádiz Bay, Natural Park, Spain. Bot. Mar. 2003, 46, 513–524. [Google Scholar] [CrossRef]
- Tanner, J.E. Edge Effects on Fauna in Fragmented Seagrass Meadows. Austr. Ecol. 2005, 30, 210–218. [Google Scholar] [CrossRef]
- Cornacchia, L.; Licci, S.; Van de Koppel, J.; Van der Wal, J.; Wharto, G.; Puijalon, S.; Bouma, T.J. Flow Velocity and Morphology of a Submerged Patch of the Aquatic Species Veronica anagallis-aquatica L. In Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces; Springer: Cham, Switzerland, 2016; pp. 141–152. [Google Scholar] [CrossRef]
- Neely, J.S. Edge Effects and the Population Structure of Humboldt Bay, California, Eelgrass (Zostera marina L.). Int. J. Ecol. 2014, 2014, 618095. [Google Scholar] [CrossRef] [Green Version]
- Ricart, A.M.; York, P.H.; Rasheed, M.A.; Pérez, M.; Romero, J.; Bryant, C.V.; Macreadie, P.I. Variability of Sedimentary Organic Carbon in Patchy Seagrass Landscapes. Mar. Pollut. Bull. 2015, 100, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.P.; Peralta, G.; Brun, F.G.; Van Duren, L.; Bouma, T.J.; Perez-Llorens, J.L. Interaction Between Hydrodynamics and Seagrass Canopy Structure: Spatially Explicit Effects on Ammonium Uptake Rates. Limnol. Oceanogr. 2008, 53, 1531–1539. [Google Scholar] [CrossRef]
- Bañolas, G.; Fernández, S.; Espino, F.; Haroun, R.; Tuya, F. Evaluation of Carbon Sinks by the Seagrass Cymodocea nodosa at an Oceanic Island: Spatial Variation and Economic Valuation. Ocean Coast. Manag. 2020, 187, 105112. [Google Scholar] [CrossRef]
- Stevens, C.L.; Hurd, C.L.; Isachsen, P.E. Modelling of Diffusion Boundary-layers in Subtidal Macroalgal Canopies: The Response to Waves and Currents. Aquat. Sci. 2003, 65, 81–91. [Google Scholar] [CrossRef]
- Oreska, M.P.J.; McGlathery, K.J.; Porter, J.H. Seagrass Blue Carbon Spatial Patterns at the Meadow-scale. PLoS ONE 2017, 12, e0176630. [Google Scholar] [CrossRef]
- Paladini de Mendoza, F.; Fontolan, G.; Mancini, E.; Scanu, E.; Scanu, S.; Bonamano, S.; Marcelli, M. Sediment Dynamics and Resuspension Processes in a Shallow-water Posidonia oceanica Meadow. Mar. Geol. 2018, 404, 174–186. [Google Scholar] [CrossRef]
- Gacia, E.; Duarte, C.M. Sediment Retention by a Mediterranean Posidonia oceanica Meadow: The Balance between Deposition and Resuspension. Estuar. Coast. Shelf. Sci. 2001, 52, 505–514. [Google Scholar] [CrossRef]
- Van Der Heide, T.; Bouma, T.J.; Van Nes, E.H.; Van de Koppel, J.; Scheffer, M.; Roelofs, J.G.M.; Van Katwijk, M.M.; Smolders, A.J.P. Spatial Self-organized Patterning in Seagrasses Along a Depth Gradient of an Intertidal Ecosystem. Ecology 2010, 91, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Ganthy, F.; Soissons, L.; Sauriau, P.-G.; Verney, R.; Sottolichio, A. Effects of Short Flexible Seagrass Zostera noltei on Flow, Erosion and Deposition Processes Determined Using Flume Experiments. Sedimentology 2015, 62, 997–1023. [Google Scholar] [CrossRef] [Green Version]
- Van Katwijk, M.M.; Bos, A.R.; Hermus, D.C.R.; Suykerbuyk, W. Sediment Modification by Seagrass Beds: Muddification and Sandification Induced by Plant Cover and Environmental Conditions. Estuar. Coast. Shelf. Sci. 2010, 89, 175–181. [Google Scholar] [CrossRef]
- Soler, M.; Serra, T.; Folkard, A.; Colomer, J. Hydrodynamics and Sediment Deposition in Turbidity Currents: Comparing Continuous and Patchy Vegetation Canopies, and the Effects of Water Depth. J. Hydrol. 2021, 594, 125750. [Google Scholar] [CrossRef]
- Follett, E.; Nepf, H. Particle Retention in a Submerged Meadow and Its Variation Near the Leading Edge. Estuaries Coast. 2018, 41, 724–733. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Huai, W.; Nepf, H. Turbulence and Particle Deposition under Steady Flow along a Submerged Seagrass Meadow. J. Geophys. Res. Oceans 2020, 125, e2019JC015985. [Google Scholar] [CrossRef]
- Zhu, Q.; Wiberg, Q.; Reidenback, M.A. Quantifying Seasonal Seagrass Effects on Flow and Sediment Dynamics in a Back-Barrier Bay. J. Geophys. Res. Oceans 2021, 126, e2020JC016547. [Google Scholar] [CrossRef]
- Marin-Diaz, B.; Bouma, T.J.; Infantes, E. Role of Eelgrass on Bed-load Transport and Sediment Resuspension Under Oscillatory Flow. Limnol. Oceanogr. 2020, 65, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Ros, A.; Colomer, J.; Serra, T.; Pujol, D.; Soler, M.; Casamitjana, X. Experimental Observations on Sediment Resuspension within Submerged Model Canopies under Oscillatory Flow. Cont. Shelf Res. 2014, 91, 220–231. [Google Scholar] [CrossRef]
- Liu, C.; Nepf, H. Sediment Deposition within and Around a Finite Patch of Model Vegetation over a Range of Channel Velocity. Water Resour. Res. 2016, 52, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Zong, L.J.; Nepf, H. Flow and Deposition in and Around a Finite Patch of Vegetation. Geomorphology 2010, 116, 362–372. [Google Scholar] [CrossRef]
- Barberá-Cebrián, C.; Sánchez-Jerez, P.; Ramos-Esplá, A.A. Fragmented Seagrass habitats on the Mediterranean coast, and distribution and abundance of mysid assemblages. Mar. Biol. 2002, 141, 405–413. [Google Scholar] [CrossRef]
- Pinna, S.; Sechi, N.; Ceccherelli, G. Canopy Structure at the Edge of Seagrass Affects Sea Urchin Distribution. Mar. Ecol. Prog. Ser. 2013, 485, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Sing Lui, L.; Tzuen Kiat, Y.; Cheng Ann, C.; Yoshida, T. Zooplankton in Seagrass and Adjacent Non-seagrass Habitats in Tun Mustapha Park, Sabah, Malaysia. Borneo. J. Mar. Sci. Aquac. 2020, 4, 6–13. [Google Scholar]
- Smith, T.M.; Hindell, J.S.; Jenkins, G.P.; Connolly, R.M. Edge Effects on Fish Associated with Seagrass and Sand Patches. Mar. Ecol. Prog. Ser. 2008, 359, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.M.; Hindell, J.S.; Jenkins, G.P.; Connolly, R.M.; Keough, M.J. Edge Effects in Patchy Seagrass Landscapes: The Role of Predation in Determining Fish Distribution. J. Exp. Mar. Biol. Ecol. 2011, 399, 8–16. [Google Scholar] [CrossRef]
- Connolly, R.M.; Hindell, J.S. Review of Nekton Patterns and Ecological Processes in Seagrass Landscapes. Estuar. Coast. Shelf. Sci. 2006, 68, 433–444. [Google Scholar] [CrossRef]
- Parnell, P.E. The Effects of Seascape Pattern on Algal Patch Structure, Sea Urchin Barrens, and Ecological Processes. J. Exp. Mar. Biol. Ecol. 2015, 465, 64–76. [Google Scholar] [CrossRef]
- Piazzi, L.; Ceccherelli, G. Effect of Sea Urchin Human Harvest in Promoting Canopy Forming Algae Restoration. Estuar. Coast. Shelf. Sci. 2019, 219, 273–277. [Google Scholar] [CrossRef]
- Lanham, B.S.; Poore, A.G.B.; Gribben, P.E. Fine-scale Responses of Mobile Invertebrates and Mesopredatory Fish to Habitat Configuration. Mar. Environ. Res. 2021, 168, 105319. [Google Scholar] [CrossRef]
- Källén, J.; Muller, H.; Franken, M.L.; Crisp, A.; Stroh, C.; Pillay, D.; Lawrence, C. Seagrass-epifauna Relationships in a Temperate South African Estuary: Interplay between Patch-size, Within-patch Location and Algal Fouling. Estuar. Coast. Shelf. Sci. 2012, 113, 213–220. [Google Scholar] [CrossRef]
- Arponen, H.; Boström, C. Responses of Mobile Epifauna to Small-scale Seagrass Patchiness: Is Fragmentation Important? Hydrobiologia 2012, 680, 1–10. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Connolly, R.M.; Jenkins, G.P.; Hindell, J.S.; Keough, M.J. Edge Patterns in Aquatic Invertebrates Explained by Predictive Models. Mar. Fresh. Res. 2010, 61, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Uhrin, A.V.; Holmquist, J.G. Effects of Propeller Scarring on Macrofaunal Use of the Seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 2003, 250, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Hovel, K.A.; Fonseca, M.S.; Myer, D.L.; Kenworthy, W.J.; Whitfield, P.E. Effects of Seagrass Landscape Structure, Structural Complexity and Hydrodynamic Regime on Macrofaunal Densities in North Carolina Seagrass Beds. Mar. Ecol. Prog. Ser. 2002, 243, 11–24. [Google Scholar] [CrossRef]
- Jelbart, J.E.; Ross, P.M.; Connolly, R.M. Patterns of Small Fish Distributions in Seagrass Beds in a Temperate Australian Estuary. J. Mar. Biol. Assoc. UK 2007, 87, 1297–1307. [Google Scholar] [CrossRef] [Green Version]
- Meysick, L.; Ysebaert, T.; Jansson, A.; Montserrat, F.; Valanko, S.; Villnäs, A.; Boström, C.; Norkko, J.; Norkko, A. Context-dependent Community Facilitation in Seagrass Meadows Along a Hydrodynamic Stress Gradient. J. Sea Res. 2019, 150, 8–23. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Hindell, J.S.; Keough, M.J.; Jenkins, G.P.; Connolly, R.M. Resource Distribution Influences Positive Edge Effects in a Seagrass Fish. Ecology 2010, 91, 2013–2021. [Google Scholar] [CrossRef] [PubMed]
- Bologna, P.A.; Heck, K.L. Impact of Habitat Edges on Density and Secondary Production of Seagrass-associated Fauna. Estuaries 2002, 25, 1033–1044. [Google Scholar] [CrossRef]
- Efird, T.P.; Konar, B. Habitat Characteristics can Influence Fish Assemblages in High Latitude Kelp Forests. Environ. Biol. Fish. 2014, 97, 1253–1263. [Google Scholar] [CrossRef]
- Hovel, K.A.; Lipcius, R.N. Habitat Fragmentation in a Seagrass Landscape: Patch Size and Complexity Control Blue Crab Survival. Ecology 2001, 82, 1814–1829. [Google Scholar] [CrossRef]
- Jompa, J.; McCook, L.J. Effects of Seagrass Habitat Fragmentation on Juvenile Blue Crab Survival and Abundance. J. Exp. Mar. Biol. Ecol. 2002, 271, 75–98. [Google Scholar] [CrossRef]
- Mahoney, R.D.; Kenworthy, M.D.; Geyer, J.K.; Hovel, K.A.; Joel Fodrie, F. Distribution and Relative Predation Risk of Nekton Reveal Complex Edge Effects within Temperate Seagrass Habitat. J. Exp. Mar. Biol. Ecol. 2018, 503, 52–59. [Google Scholar] [CrossRef]
- Gorman, A.M.; Gregory, R.S.; Schneider, D.C. Eelgrass Patch Size and Proximity to the Patch Edge Affect Predation Risk of Recently Settled Age 0 Cod (Gadus). J. Exp. Mar. Biol. Ecol. 2009, 371, 1–9. [Google Scholar] [CrossRef]
- Carroll, J.M.; Furman, B.T.; Tettelbach, S.T.; Peterson, B.J. Balancing the Edge Effects Budget: Bay Scallop Settlement and Loss along a Seagrass Edge. Ecology 2012, 93, 1637–1647. [Google Scholar] [CrossRef]
- Carroll, J.M.; Peterson, B.J. Ecological Trade-offs in Seascape Ecology: Bay Scallop Survival and Growth across a Seagrass Seascape. Landsc. Ecol. 2013, 28, 1401–1413. [Google Scholar] [CrossRef]
- Bologna, P.A.X.; Heck, K.L., Jr. Differential Predation and Growth Rates of Bay Scallops within a Seagrass Habitat. J. Exp. Mar. Biol. Ecol. 1999, 239, 299–314. [Google Scholar] [CrossRef]
- Vonk, J.A.; Christianen, M.J.A.; Stapel, J. Abundance, Edge Effect, and Seasonality of Fauna in Mixed-species Seagrass Meadows in Southwest Sulawesi, Indonesia. Mar. Biol. Res. 2010, 6, 282–291. [Google Scholar] [CrossRef]
- Peterson, C.H.; Luettich, R.A., Jr.; Micheli, F.; Skilleter, G.A. Attenuation of Water Flow inside Seagrass Canopies of Differing Structure. Mar. Ecol. Prog. Ser. 2004, 268, 81–92. [Google Scholar] [CrossRef]
- Matias, M.G.; Coleman, R.A.; Hochuli, D.F.; Underwood, A.J. Macrofaunal Responses to Edges Are Independent of Habitat-Heterogeneity in Experimental Landscapes. PLoS ONE 2013, 8, e61349. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.A.; D’Odorico, P.; McGlathery, K.J.; Wiberg, P.L. Spatially Explicit Feedbacks between Seagrass Meadow Structure, Sediment and Light: Habitat Suitability for Seagrass Growth. Adv. Water Res. 2016, 93, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.S.K.; Hamylton, S. On the Very Edge: Faunal and Functional Responses to the Interface between Benthic Seagrass and Unvegetated Sand Assemblages. Mar. Ecol. Prog. Ser. 2016, 553, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.S.K.; Hamylton, S. Abrupt Transitions between Macrobenthic Faunal Assemblages across Seagrass Bed Margins. Estuar. Coast. Shelf. Sci. 2013, 31, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Murphy, H.M.; Jenkins, G.P.; Hindell, J.S.; Connolly, R.M. Response of Fauna in Seagrass to Habitat Edges, Patch Attributes and Hydrodynamics. Aus. Ecol. 2010, 35, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Yarnall, A.H.; Fodrie, F.J. Predation Patterns across States of Landscape Fragmentation can Shift with Seasonal Transitions. Oecologia 2020, 193, 403–413. [Google Scholar] [CrossRef]
- Gross, C.; Donoghue, C.; Pruitt, C.; Ruesink, J.L. Habitat Use Patterns and Edge effects Across a Seagrass-unvegetated Ecotone Depend on Species-specific Behaviors and Sampling Methods. Mar. Ecol. Prog. Ser. 2018, 598, 21–33. [Google Scholar] [CrossRef]
- Pierri-Daunt, A.B.; Tanaka, M.O. Assessing Habitat Fragmentation on Marine Epifaunal Macroinvertebrate Communities: An Experimental Approach. Landsc. Ecol. 2014, 29, 17–28. [Google Scholar] [CrossRef]
- Gobert, S.; Lepoint, G.; Pelaprat, C.; Remy, F.; Lejeune, P.; Richir, J.; Abadie, A. Temporal Evolution of Sand Corridors in a Posidonia oceanica Seascape: A 15-year Study. Mediterr. Mar. Sci. 2016, 17, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Cabaço, S.; Machas, R.; Vieira, V.; Santos, R. Impacts of Urban Wastewater Discharge on Seagrass Meadows (Zostera noltii). Estuar. Coast. Shelf. Sci. 2008, 78, 1–13. [Google Scholar] [CrossRef]
- El Allaoui, N.; Serra, T.; Colomer, J.; Soler, M.; Casamitjana, X.; Oldham, C. Interactions between Fragmented Seagrass Canopies and the Local Hydrodynamics. PLoS ONE 2016, 11, e0156264. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, C.; Nepf, H. Turbulent Kinetic Energy in Submerged Model Canopies under Oscillatory Flow. Water Resour. Res. 2018, 54, 1734–1750. [Google Scholar] [CrossRef]
- Maltese, A.; Cox, E.; Folkard, A.M.; Ciraolo, G.; La Loggia, G.; Lombardo, G. Laboratory Measurements of Flow and Turbulence: In Discontinuous Distributions of Ligulate Seagrass. J. Hydraul. Eng. 2007, 133, 750–760. [Google Scholar] [CrossRef]
- Folkard, A.M. Flow Regimes in Gaps within Stands of Flexible vegetation: Laboratory flume simulations. Environ. Fluid Mech. 2011, 11, 289–306. [Google Scholar] [CrossRef]
- Serra, T.; Oldham, N.; Colomer, J. Local Hydrodynamics at Edges of Marine Canopies under Oscillatory Flows. PLoS ONE 2018, 13, e0201737. [Google Scholar] [CrossRef]
- El Allaoui, N.; Serra, T.; Soler, M.; Colomer, J.; Pujol, D.; Oldham, C. Modified Hydrodynamics in Canopies with Longitudinal Gaps Exposed to Oscillatory Flows. J. Hydrol. 2015, 531, 840–849. [Google Scholar] [CrossRef]
- Beudin, A.; Kalra, T.S.; Ganju, N.K.; Warner, J.C. Development of a Coupled Wave-flow-vegetation Interaction Model. Comput. Geosci. 2017, 100, 76–86. [Google Scholar] [CrossRef]
- Villard, M.-A.; Metzger, J.P. Beyond the Fragmentation Debate: A Conceptual Model to Predict when Habitat Configuration Really Matters. J. Appl. Ecol. 2014, 51, 309–318. [Google Scholar] [CrossRef]
- Nurra, N.; Belci, F.; Mussat Sartor, R.; Pessani, D. Monitoring of a Posidonia oceanica Bed (Punta Manara, Eastern Ligurian Sea, Italy) and the Associated Molluscs Twenty Years After: What’s New? Aquat. Bot. 2013, 104, 162–169. [Google Scholar] [CrossRef]
- Mota, C.F.; Engelen, A.H.; Serrao, E.A.; Coelho, M.A.G.; Marbà, N.; Krause-Jensen, D.; Pearson, G.A. Differentiation in Fitness-related Traits in Response to Elevated Temperatures Between Leading and Trailing Edge Populations of Marine Macrophytes. PLoS ONE 2018, 13, e0203666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, K.L.; Skinner, M.A.; Lotze, H.K. Projected 21st-century Distribution of Canopy-forming Seaweeds in the Northwest Atlantic with Climate Change. Divers. Distrib. 2019, 25, 582–602. [Google Scholar] [CrossRef] [Green Version]
- Olesen, B.; Krause-Jensen, D.; Christensen, P.B. Depth-Related Changes in Reproductive Strategy of a Cold-Temperate Zostera marina Meadow. Estuar. Coast. 2017, 40, 553–563. [Google Scholar] [CrossRef]
- Martins, G.M.; Harley, C.D.G.; Faria, J.; Vale, M.; Hawkins, S.J.; Neto, A.I.; Arenas, F. Direct and Indirect Effects of Climate Change Squeeze the Local Distribution of a Habitat-forming Seaweed. Mar. Ecol. Prog. Ser. 2019, 626, 43–52. [Google Scholar] [CrossRef]
- Adams, M.P.; Hovey, R.K.; Hipsey, M.R.; Bruce, L.C.; Ghisalberti, M.; Lowe, R.J.; Gruber, R.K.; Ruiz-Montoya, L.; Maxwell, P.S.; Callaghan, D.P.; et al. Feedback Between Sediment and Light for Seagrass: Where is it important? Limnol. Oceanogr. 2016, 61, 1937–1955. [Google Scholar] [CrossRef]
- Barcelona, A.; Oldham, C.; Colomer, J.; Garcia-Orellana, J.; Serra, T. Particle Capture by Seagrass Canopies Under Oscillatory flow. Coast. Eng. 2021, 169, 103972. [Google Scholar] [CrossRef]
- Hensgen, G.M.; Holt, G.J.; Holt, S.A.; Williams, J.A.; Stunz, G.W. Landscape Pattern Influences Nekton Diversity and Abundance in Seagrass Meadows. Mar. Ecol. Prog. Ser. 2014, 507, 139–152. [Google Scholar] [CrossRef]
- Pagès, J.F.; Gera, A.; Romero, J.; Alcoverro, T. Matrix Composition and Patch Edges Influence Plant-herbivore Interactions in Marine Landscapes. Funct. Ecol. 2014, 28, 1440–1448. [Google Scholar] [CrossRef] [Green Version]
- Rielly-Carroll, E.; Freestone, A.L. Habitat Fragmentation Differentially Affects Trophic Levels and Alters Behavior in a Multi-trophic Marine System. Oecologia 2017, 183, 899–908. [Google Scholar] [CrossRef]
- Warry, F.Y.; Hindell, J.S.; Macreadie, P.I.; Jenkins, G.P.; Connolly, R.M. Integrating Edge Effects into Studies of Habitat Fragmentation: A test Using Meiofauna in Seagrass. Oecologia 2009, 159, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.M.; Jenkins, G.P.; Hutchinson, N. Seagrass Edge Effects on Fish Assemblages in Deep and Shallow habitats. Estuar. Coast. Shelf. Sci. 2012, 115, 291–299. [Google Scholar] [CrossRef]
- Statton, J.; Gustin-Craig, S.; Dixon, K.W.; Kendrick, G.A. Edge Effects Along a Seagrass Margin Result in an Increased Grazing Risk on Posidonia australis Transplants. PLoS ONE 2015, 10, e0137778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-H.; Li, C.; Zhao, J.-S.; Li, W.-T.; Zhang, P.-D. Seagrass Resilience: Where and How to Collect Donor Plants for the Ecological Restoration of Eelgrass Zostera marina in Rongcheng Bay, Shandong Peninsula, China. Ecol. Eng. 2020, 158, 106029. [Google Scholar] [CrossRef]
- Tamaki, H.; Tokuoka, M.; Nishijima, W.; Terawaki, T.; Okada, M. Deterioration of Eelgrass, Zostera marina L., Meadows by Water Pollution in Seto Inland Sea, Japan. Mar. Pollut. Bull. 2002, 44, 1253–1258. [Google Scholar] [CrossRef]
- Han, Q.; Bouma, T.J.; Brun, F.G.; Suykerbuyk, W.; Van Katwijk, M.M. Resilience of Zostera noltii to Burial or Erosion Disturbances. Mar. Ecol. Prog. Ser. 2012, 449, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Fraser, M.V.; Kendrick, G.A.; Statton, J.; Hovey, R.K.; Zavala-Perez, A.; Walker, D.I. Extreme Climate Events Lower Resilience of Foundation Seagrass at Edge of Biogeographical range. J. Ecol. 2014, 102, 1528–1536. [Google Scholar] [CrossRef]
- Moore, K.A. Influence of Seagrasses on Water Quality in Shallow Regions of the Lower Chesapeake Bay. J. Coast. Res. 2004, 45, 162–178. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Marion, S.R.; Lombana, A.V.; Orth, R.J. Faunal Communities are Invariant to Fragmentation in Experimental Seagrass Landscapes. PLoS ONE 2016, 11, e0156550. [Google Scholar] [CrossRef] [PubMed]
- Calizza, E.; Costantini, M.L.; Carlino, P.; Bentivoglio, F.; Orlandi, L.; Rossi, L. Posidonia oceanica Habitat Loss and Changes in Litter-associated Biodiversity Organization: A Stable Isotope-based Preliminary Study. Estuar. Coast. Shelf. Sci. 2013, 135, 137–145. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Issaris, Y.; Poursanidis, D.; Thessalou-Legaki, M. Vulnerability of Marine Habitats to the Invasive Green Alga Caulerpa racemosa var. cylindracea within a Marine Protected Area. Mar. Environ. Res. 2010, 70, 210–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Terms and Definitions |
---|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colomer, J.; Serra, T. The World of Edges in Submerged Vegetated Marine Canopies: From Patch to Canopy Scale. Water 2021, 13, 2430. https://doi.org/10.3390/w13172430
Colomer J, Serra T. The World of Edges in Submerged Vegetated Marine Canopies: From Patch to Canopy Scale. Water. 2021; 13(17):2430. https://doi.org/10.3390/w13172430
Chicago/Turabian StyleColomer, Jordi, and Teresa Serra. 2021. "The World of Edges in Submerged Vegetated Marine Canopies: From Patch to Canopy Scale" Water 13, no. 17: 2430. https://doi.org/10.3390/w13172430
APA StyleColomer, J., & Serra, T. (2021). The World of Edges in Submerged Vegetated Marine Canopies: From Patch to Canopy Scale. Water, 13(17), 2430. https://doi.org/10.3390/w13172430