Advanced Oxidation Processes Based on Sulfate Radicals for Wastewater Treatment: Research Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Databases
2.2. Search Strategy
3. Results and Discussion
3.1. Study Selection and Preliminary Approaches
3.2. Advanced Oxidation Processes Based on SO4•−
3.2.1. Fundamentals
3.2.2. Parameters Influencing the Efficiency of the Process
3.2.3. Application of the Process
3.3. Combination of Conventional Systems and SR-AOPs
3.4. Barriers and Limitations Acribed to SR-AOPs Implementation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Li, Y.; Xiong, Z.; Yao, G.; Lai, B. The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review. Chin. Chem. Lett. 2019, 30, 2139–2146. [Google Scholar] [CrossRef]
- Mohapatra, D.P.; Kirpalani, D.M. Advancement in treatment of wastewater: Fate of emerging contaminants. Can. J. Chem. Eng. 2019, 97, 2621–2631. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water 2018, 10, 1828. [Google Scholar] [CrossRef] [Green Version]
- Alamgholiloo, H.; Hashemzadeh, B.; Pesyan, N.N.; Sheikhmohammadi, A.; Asgari, E.; Yeganeh, J.; Hashemzadeh, H. A facile strategy for designing core-shell nanocomposite of ZIF-67/Fe3O4: A novel insight into ciprofloxacin removal from wastewater. Process. Saf. Environ. Prot. 2020, 147, 392–404. [Google Scholar] [CrossRef]
- Ao, X.-W.; Eloranta, J.; Huang, C.-H.; Santoro, D.; Sun, W.-J.; Lu, Z.-D.; Li, C. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Res. 2020, 188, 116479. [Google Scholar] [CrossRef]
- Ahile, U.J.; Wuana, R.A.; Itodo, A.U.; Sha’Ato, R.; Malvestiti, J.A.; Dantas, R.F. Are iron chelates suitable to perform photo-Fenton at neutral pH for secondary effluent treatment? J. Environ. Manag. 2020, 278, 111566. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.-Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2020, 406, 127083. [Google Scholar] [CrossRef]
- Liu, K.; Bai, L.; Shi, Y.; Wei, Z.; Spinney, R.; Göktaş, R.K.; Dionysiou, D.; Xiao, R. Simultaneous disinfection of E. faecalis and degradation of carbamazepine by sulfate radicals: An experimental and modelling study. Environ. Pollut. 2020, 263, 114558. [Google Scholar] [CrossRef]
- Zhou, C.-S.; Wu, J.-W.; Dong, L.-L.; Liu, B.-F.; Xing, D.-F.; Yang, S.-S.; Wu, X.-K.; Wang, Q.; Fan, J.-N.; Feng, L.-P.; et al. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J. Hazard. Mater. 2020, 388, 122070. [Google Scholar] [CrossRef]
- Giwa, A.; Yusuf, A.; Balogun, H.A.; Sambudi, N.S.; Bilad, M.R.; Adeyemi, I.; Chakraborty, S.; Curcio, S. Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review. Process. Saf. Environ. Prot. 2020, 146, 220–256. [Google Scholar] [CrossRef]
- Sanabria, P.; Scunderlick, D.; Wilde, M.L.; Lüdtke, D.S.; Sirtori, C. Solar photo-Fenton treatment of the anti-cancer drug anastrozole in different aqueous matrices at near-neutral pH: Transformation products identification, pathways proposal, and in silico (Q)SAR risk assessment. Sci. Total Environ. 2020, 754, 142300. [Google Scholar] [CrossRef] [PubMed]
- Camargo-Perea, A.L.; Rubio-Clemente, A.; Peñuela, G.A. Use of Ultrasound as an Advanced Oxidation Process for the Degradation of Emerging Pollutants in Water. Water 2020, 12, 1068. [Google Scholar] [CrossRef] [Green Version]
- Jureczko, M.; Kalka, J. Cytostatic pharmaceuticals as water contaminants. Eur. J. Pharmacol. 2019, 866, 172816. [Google Scholar] [CrossRef] [PubMed]
- Roshan, A.; Kumar, M. Water end-use estimation can support the urban water crisis management: A critical review. J. Environ. Manag. 2020, 268, 110663. [Google Scholar] [CrossRef]
- Gao, P.; Cui, J.; Deng, Y. Direct regeneration of ion exchange resins with sulfate radical-based advanced oxidation for enabling a cyclic adsorption—Regeneration treatment approach to aqueous perfluorooctanoic acid (PFOA). Chem. Eng. J. 2020, 405, 126698. [Google Scholar] [CrossRef]
- Nidheesh, P.; Scaria, J.; Babu, D.S.; Kumar, M.S. An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater. Chemosphere 2020, 263, 127907. [Google Scholar] [CrossRef]
- Fattahi, A.; Arlos, M.J.; Bragg, L.M.; Kowalczyk, S.; Liang, R.; Schneider, O.M.; Zhou, N.; Servos, M.R. Photodecomposition of pharmaceuticals and personal care products using P25 modified with Ag nanoparticles in the presence of natural organic matter. Sci. Total Environ. 2020, 752, 142000. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, H.; Bragg, L.M.; Servos, M.R.; Craig, P.M. Multiple Stressors in the Environment: The Effects of Exposure to an Antidepressant (Venlafaxine) and Increased Temperature on Zebrafish Metabolism. Front. Physiol. 2019, 10, 1431. [Google Scholar] [CrossRef]
- Rostam, A.B.; Taghizadeh, M. Advanced oxidation processes integrated by membrane reactors and bioreactors for various wastewater treatments: A critical review. J. Environ. Chem. Eng. 2020, 8, 104566. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J.A.; Manzano-Agugliaro, F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. Int. J. Environ. Res. Public Health 2019, 17, 170. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review. TrAC Trends Anal. Chem. 2019, 122, 115744. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Show, P.-L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2020, 409, 124413. [Google Scholar] [CrossRef]
- Seibert, D.; Zorzo, C.F.; Borba, F.H.; de Souza, R.M.; Quesada, H.B.; Bergamasco, R.; Baptista, A.T.; Inticher, J.J. Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced Oxidation Processes: A review. Sci. Total Environ. 2020, 748, 141527. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, A.; Corno, G.; Manaia, C.M.; Rizzo, L. Impact of disinfection processes on bacterial community in urban wastewater: Should we rethink microbial assessment methods? J. Environ. Chem. Eng. 2020, 8, 104393. [Google Scholar] [CrossRef]
- Hunge, Y.; Yadav, A.; Khan, S.; Takagi, K.; Suzuki, N.; Teshima, K.; Terashima, C.; Fujishima, A. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination. J. Colloid Interface Sci. 2020, 582, 1058–1066. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Wang, J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. J. Hazard. Mater. 2020, 404, 124191. [Google Scholar] [CrossRef]
- Olvera-Vargas, H.; Gore-Datar, N.; Garcia-Rodriguez, O.; Mutnuri, S.; Lefebvre, O. Electro-Fenton treatment of real pharmaceutical wastewater paired with a BDD anode: Reaction mechanisms and respective contribution of homogeneous and heterogeneous OH. Chem. Eng. J. 2020, 404, 126524. [Google Scholar] [CrossRef]
- Hao, Y.; Ma, H.; Wang, Q.; Ge, L.; Yang, Y.; Zhu, C. Refractory DOM in industrial wastewater: Formation and selective oxidation of AOPs. Chem. Eng. J. 2020, 406, 126857. [Google Scholar] [CrossRef]
- Homlok, R.; Kiskó, G.; Kovács, A.; Tóth, T.; Takács, E.; Mohácsi-Farkas, C.; Wojnárovits, L.; Szabó, L. Antibiotics in a wastewater matrix at environmentally relevant concentrations affect coexisting resistant/sensitive bacterial cultures with profound impact on advanced oxidation treatment. Sci. Total Environ. 2020, 754, 142181. [Google Scholar] [CrossRef]
- Yongsheng, X.; Xintong, L.; Hongwei, H.; Yuexiao, S.; Qing, X.; Wenchao, P. Aminated N-doped graphene hydrogel for long-term catalytic oxidation in strong acidic environment. J. Hazard. Mater. 2020, 401, 123742. [Google Scholar] [CrossRef]
- Duan, X.; Yang, S.; Wacławek, S.; Fang, G.; Xiao, R.; Dionysiou, D.D. Limitations and prospects of sulfate-radical based advanced oxidation processes. J. Environ. Chem. Eng. 2020, 8, 103849. [Google Scholar] [CrossRef]
- Guo, P.-C.; Qiu, H.-B.; Yang, C.-W.; Zhang, X.; Shao, X.-Y.; Lai, Y.-L.; Sheng, G.-P. Highly efficient removal and detoxification of phenolic compounds using persulfate activated by MnOx@OMC: Synergistic mechanism and kinetic analysis. J. Hazard. Mater. 2020, 402, 123846. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, X.; Dong, X.; Zhang, X.; Tan, Y.; Yuan, F.; Zheng, S.; Li, C. Synergistic activation of peroxymonosulfate via in situ growth FeCo2O4 nanoparticles on natural rectorite: Role of transition metal ions and hydroxyl groups. Chemosphere 2020, 263, 127965. [Google Scholar] [CrossRef] [PubMed]
- Monteoliva-García, A.; Martín-Pascual, J.; Muñío, M.; Poyatos, J. Effects of carrier addition on water quality and pharmaceutical removal capacity of a membrane bioreactor—Advanced oxidation process combined treatment. Sci. Total Environ. 2019, 708, 135104. [Google Scholar] [CrossRef] [PubMed]
- Licciardello, F.; Milani, M.; Consoli, S.; Pappalardo, N.; Barbagallo, S.; Cirelli, G. Wastewater tertiary treatment options to match reuse standards in agriculture. Agric. Water Manag. 2018, 210, 232–242. [Google Scholar] [CrossRef]
- Qi, W.; Zhu, S.; Shitu, A.; Ye, Z.; Liu, D. Low concentration peroxymonosulfate and UVA-LED combination for E. coli inactivation and wastewater disinfection from recirculating aquaculture systems. J. Water Process. Eng. 2020, 36, 101362. [Google Scholar] [CrossRef]
- Xie, Y.; Dai, J.; Chen, G. Feasibility study on applying the iron-activated persulfate system as a pre-treatment process for clofibric acid selective degradation in municipal wastewater. Sci. Total Environ. 2020, 739, 140020. [Google Scholar] [CrossRef]
- Gao, Y.-Q.; Zhang, J.; Zhou, J.-Q.; Li, C.; Gao, N.-Y.; Yin, D.-Q. Persulfate activation by nano zero-valent iron for the degradation of metoprolol in water: Influencing factors, degradation pathways and toxicity analysis. RSC Adv. 2020, 10, 20991–20999. [Google Scholar] [CrossRef]
- Yu, C.; Wen, M.; Li, S.; Tong, Z.; Yin, Y.; Liu, X.; Li, Y.; Wu, Z.; Dionysiou, D.D. Elbaite catalyze peroxymonosulfate for advanced oxidation of organic pollutants: Hydroxyl groups induced generation of reactive oxygen species. J. Hazard. Mater. 2020, 398, 122932. [Google Scholar] [CrossRef]
- Dibene, K.; Yahiaoui, I.; Aitali, S.; Khenniche, L.; Amrane, A.; Aissani-Benissad, F. Central composite design applied to paracetamol degradation by heat-activated peroxydisulfate oxidation process and its relevance as a pretreatment prior to a biological treatment. Environ. Technol. 2019, 42, 905–913. [Google Scholar] [CrossRef]
- Shad, A.; Chen, J.; Qu, R.; Dar, A.A.; Bin-Jumah, M.; Allam, A.A.; Wang, Z. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways. Chem. Eng. J. 2020, 398, 125357. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Yuan, S.; Wang, W.; Hu, Z.-H. Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution. J. Photochem. Photobiol. A Chem. 2017, 348, 79–88. [Google Scholar] [CrossRef]
- Mousel, D.; Bastian, D.; Firk, J.; Palmowski, L.; Pinnekamp, J. Removal of pharmaceuticals from wastewater of health care facilities. Sci. Total Environ. 2020, 751, 141310. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2015, 106, 213–228. [Google Scholar] [CrossRef]
- Qu, J.; Wang, H.; Wang, K.; Yu, G.; Ke, B.; Yu, H.-Q.; Ren, H.; Zheng, X.; Li, J.; Li, W.-W.; et al. Municipal wastewater treatment in China: Development history and future perspectives. Front. Environ. Sci. Eng. 2019, 13, 88. [Google Scholar] [CrossRef]
- Cherchi, C.; Kesaano, M.; Badruzzaman, M.; Schwab, K.; Jacangelo, J.G. Municipal reclaimed water for multi-purpose applications in the power sector: A review. J. Environ. Manag. 2019, 236, 561–570. [Google Scholar] [CrossRef]
- Chanikya, P.; Nidheesh, P.; Babu, D.S.; Gopinath, A.; Kumar, M.S. Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes. Sep. Purif. Technol. 2020, 254, 117570. [Google Scholar] [CrossRef]
- Kiani, R.; Mirzaei, F.; Ghanbari, F.; Feizi, R.; Mehdipour, F. Real textile wastewater treatment by a sulfate radicals-Advanced Oxidation Process: Peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon. J. Water Process. Eng. 2020, 38, 101623. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Wang, J. Peroxymonosulfate Activation by Fe–Co–O-Codoped Graphite Carbon Nitride for Degradation of Sulfamethoxazole. Environ. Sci. Technol. 2020, 54, 10361–10369. [Google Scholar] [CrossRef] [PubMed]
- Chekem, C.T.; Chiron, S.; Mancaux, J.; Plantard, G.; Goetz, V. Thermal activation of persulfates for wastewater depollution on pilot scale solar equipment. Sol. Energy 2020, 205, 372–379. [Google Scholar] [CrossRef]
- Naim, S.; Ghauch, A. Ranitidine abatement in chemically activated persulfate systems: Assessment of industrial iron waste for sustainable applications. Chem. Eng. J. 2016, 288, 276–288. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 2019, 378, 122149. [Google Scholar] [CrossRef]
- Soleymani, A.R.; Moradi, M. Performance and modeling of UV/persulfate/Ce(IV) process as a dual oxidant photochemical treatment system: Kinetic study and operating cost estimation. Chem. Eng. J. 2018, 347, 243–251. [Google Scholar] [CrossRef]
- Manos, D.; Miserli, K.; Konstantinou, I. Perovskite and Spinel Catalysts for Sulfate Radical-Based Advanced Oxidation of Organic Pollutants in Water and Wastewater Systems. Catalysts 2020, 10, 1299. [Google Scholar] [CrossRef]
- Ding, J.; Shen, L.; Yan, R.; Lu, S.; Zhang, Y.; Zhang, X.; Zhang, H. Heterogeneously activation of H2O2 and persulfate with goethite for bisphenol A degradation: A mechanistic study. Chemosphere 2020, 261, 127715. [Google Scholar] [CrossRef] [PubMed]
- Stathoulopoulos, A.; Mantzavinos, D.; Frontistis, Z. Coupling Persulfate-Based AOPs: A Novel Approach for Piroxicam Degradation in Aqueous Matrices. Water 2020, 12, 1530. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Y.; Jiang, X.; Xie, Z.; Li, X.; Chen, C.; Chen, H. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water. Chemosphere 2018, 190, 296–306. [Google Scholar] [CrossRef]
- Chi, H.; Wan, J.; Ma, Y.; Wang, Y.; Huang, M.; Li, X.; Pu, M. ZSM-5-(C@Fe) activated peroxymonosulfate for effectively degrading ciprofloxacin: In-depth analysis of degradation mode and degradation path. J. Hazard. Mater. 2020, 398, 123024. [Google Scholar] [CrossRef]
- Fauzi, A.; Jalil, A.; Hitam, C.; Aziz, F.; Chanlek, N. Superior sulfate radicals-induced visible-light-driven photodegradation of pharmaceuticals by appropriate Ce loading on fibrous silica ceria. J. Environ. Chem. Eng. 2020, 8, 104484. [Google Scholar] [CrossRef]
- Forouzesh, M.; Ebadi, A.; Aghaeinejad-Meybodi, A. Continuous fixed-bed oxidation of metronidazole by the sulfate radical based process over nitric acid treated granular activated carbon. J. Water Process. Eng. 2020, 36, 101280. [Google Scholar] [CrossRef]
- Ren, H.; Li, C.; Han, Z.; Li, T.; Jin, X.; Zhou, R. Magnetic mesoporous FeCo2O4—Fe3O4 microrods as novel peroxymonosulfate activators for effective metronidazole degradation. J. Chem. Technol. Biotechnol. 2020, 95, 3202–3212. [Google Scholar] [CrossRef]
- Wang, B.; Fu, T.; An, B.; Liu, Y. UV light-assisted persulfate activation by Cu0-Cu2O for the degradation of sulfamerazine. Sep. Purif. Technol. 2020, 251, 117321. [Google Scholar] [CrossRef]
- Li, H.; Yao, Y.; Zhang, J.; Du, J.; Xu, S.; Wang, C.; Zhang, D.; Tang, J.; Zhao, H.; Zhou, J. Degradation of phenanthrene by peroxymonosulfate activated with bimetallic metal-organic frameworks: Kinetics, mechanisms, and degradation products. Chem. Eng. J. 2020, 397, 125401. [Google Scholar] [CrossRef]
- Huang, Z.-H.; Ji, Z.-Y.; Zhao, Y.-Y.; Liu, J.; Li, F.; Wang, S.-Z.; Yuan, J.-S. Efficient degradation of 2-methoxyphenol using heterogeneous-homogeneous synergistic activated persulfate with modified clinoptilolite + heat. Chem. Eng. J. 2020, 400, 125863. [Google Scholar] [CrossRef]
- Fernandes, A.; Makoś, P.; Khan, J.A.; Boczkaj, G. Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes. J. Clean. Prod. 2018, 208, 54–64. [Google Scholar] [CrossRef]
- Paździor, K.; Bilińska, L.; Ledakowicz, S. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J. 2018, 376, 120597. [Google Scholar] [CrossRef]
- Dhangar, K.; Kumar, M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci. Total Environ. 2020, 738, 140320. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S.; Pérez, J.A.S. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Sci. Total Environ. 2011, 409, 4141–4166. [Google Scholar] [CrossRef]
- Thanikkal, M.P.; Antony, S.P. Integrated Electro-Fenton and Membrane Bioreactor System for Matured Landfill Leachate Treatment. J. Hazard. Toxic Radioact. Waste 2021, 25, 04020058. [Google Scholar] [CrossRef]
- Sathya, U.; Nithya, M.; Balasubramanian, N. Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. J. Environ. Manag. 2019, 246, 768–775. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, H.; Li, G.; Xu, D.; Yan, Z.; Chen, R.; Zhao, J.; Tang, X. A solar photo-thermochemical hybrid system using peroxydisulfate for organic matters removal and improving ultrafiltration membrane performance in surface water treatment. Water Res. 2020, 188, 116482. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Shu, L.; Jegatheesan, V.; Bhuiyan, M.A. Effect of the coagulation/persulfate pre-treatment to mitigate organic fouling in the forward osmosis of municipal wastewater treatment. J. Environ. Manag. 2019, 249, 109394. [Google Scholar] [CrossRef]
- Qu, F.; Yang, Z.; Li, X.; Yu, H.; Pan, Z.; Fan, G.; He, J.; Rong, H. Membrane fouling control by UV/persulfate in tertiary wastewater treatment with ultrafiltration: A comparison with UV/hydroperoxide and role of free radicals. Sep. Purif. Technol. 2020, 257, 117877. [Google Scholar] [CrossRef]
- Mao, G.; Hu, H.; Liu, X.; Crittenden, J.; Huang, N. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. Environ. Pollut. 2020, 275, 115785. [Google Scholar] [CrossRef]
- Sharma, A.; Ahmad, J.; Flora, S. Application of advanced oxidation processes and toxicity assessment of transformation products. Environ. Res. 2018, 167, 223–233. [Google Scholar] [CrossRef]
- Cai, C.; Liu, J.; Zhang, Z.; Zheng, Y.; Zhang, H. Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate. Sep. Purif. Technol. 2016, 165, 42–52. [Google Scholar] [CrossRef]
- Amor, C.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review. Water 2019, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.P.; Marques, C.C.; Portugal, I.; Nunes, M.I. Fenton processes for AOX removal from a kraft pulp bleaching industrial wastewater: Optimisation of operating conditions and cost assessment. J. Environ. Chem. Eng. 2020, 8, 104032. [Google Scholar] [CrossRef]
AOP | Pollutant | Operating Conditions | Pollutant Removal | Reference |
---|---|---|---|---|
PS/Fe | Enterococcus faecalis (E. faecalis) and carbamazepine (CBZ) | Time: 12 min, [E. faecalis]: 1 × 107 CFU/mL, [CBZ]: 10 μM, [PS]: 1 mM, Zero valent iron: 0.2 g/L, ácido acético: 10 mM, initial pH: 5.5 | E. faecalis (73.8 ± 2.3)%, CBZ 42.3% | [8] |
Clofibric acid (CFA) | Time: 30 min, [CFA]: 0.01 mM, [PS]: 270 mg/L, [Fe]: 56 mg/L, initial pH: 7 | 72.0% | [37] | |
Metoprolol (MTP) | Time: 30 min, [MTP]: 0.05 Mm, [PS]: 2.0 Mm, [Fe]: 0.33 g/L, pH was not modified | 91.1% | [38] | |
PS/Fe–Electrochemical, electrocoagulation | Dyeing WW | Time: 120 min, initial pH: 6, applied voltage: 3 V, [PS]: 500 mg/L; [Ferrous ion]: 100 mg/L | 93.5% chemical organic demand (COD) | [47] |
PS/heat | Paracetamol (PCT) | Time: 120 min, [PCT]: 0.33 Mm, [PDS]: 5 mM, T: 68 °C, pH: 6 | 94.2% | [40] |
PS/AC | Metronidazole (MTZ) | Time: 2.8 min, [MTZ]: 0.58 mM, PS/MTZ = 20/1, [PS]: 11.6 mM, QL: 2.40 cm3/min, initial pH: 3.9, hbed: 3.5 cm | 93.0% | [60] |
PS/UV/Cu0-Cu2O | Sulfamerazine (SMZ) | Time: 30 min, [SMZ]: 50 mg/L, [catalyst]: 0.2 g/L, [PS]: 0.8 g/L, UV wavelength: 365 nm, initial pH: 7.0, T: 25 °C | 99.9% SMZ, 30% TOC | [62] |
PMS/Elbaite | Methylene blue (MB) | Time: 40 min, [MB]: 5 mg/L, [PMS/elbaite]: 1.0 g/L, [PMS]: 0.50 g/L, initial pH: 2.9, T: 25 °C | 99.9% | [39] |
PS/MnOx@OMC | Phenol | Time: 30 min, [phenol]: 20 mg/L, [catalyst]: 0.1 g/L, [PS]: 1 mM; initial pH: 8 | 98% | [32] |
PMS/FeCo2O4/rectorite | Atrazine (ATZ) | Time: 20 min, [ATZ]: 10 ppm, [PMS]: 0.5 mM, [catalysts]: 0.3 g/L, T: 298 K, initial pH: 7.0 | 90.44% | [33] |
PMS/FeCo-BDC | Phenanthrene (PHE) | Time: 30 min, [PMS]: 0.2 mM, [PHE]: 1.0 mg/L, [catalysts]: 50 mg/L, initial pH, T = 25 °C | 99.0% | [63] |
PMS/ UVA-LED | Escherichia coli (E. coli) | Time: 60 min, [E. coli]: 20 mL (about 1 × 106 CFU/mL), wavelength UVA-LED: 365 nm, [PMS]: 1.0 mg/L, initial pH: 7 | 58.7% | [36] |
PMS/ZSM-5-(C@Fe) | Ciprofloxacin (CIP) | Time: 20 min, PMS: CIP: 40:1, [CIP]: 20 mg/L, [catalyst]: 4 g/L, T = 25 °C, pH was not modified | 99.9% CIP, 41.8% COD | [58] |
PDS/CuO@AC | Textile WW | Time: 60 min, [PDS]: 7 mM, [catalyst]: 1 g/L, initial pH: 7.0 | 61% total organic carbon (TOC), 72% COD, 95% color | [48] |
PDS/Goethite | Bisphenol A (BPA) | Time: 240 min, [goethite]: 0.5 g/L, [BPA]: 0.1 mM, [PS]: 1.0 Mm, initial pH: 4.5 | 61.4% | [55] |
PDS/CeO2/visible light | Ciprofloxacin (CIP) | Time: 240 min, Reaction condition: Visible light, [catalyst]: 0.375 g/L, [CIP]: 10 ppm, initial pH: 7 | 92% | [59] |
PDS/clinoptilolite + heat | 2-Methoxyphenol (MOP) | Time: 20 min, T: 80 °C, [MOP]: 200 mg/L, [modified zeolite]: 1.0 g/L, [PS]: 1.2 g/L | 99.2% | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urán-Duque, L.; Saldarriaga-Molina, J.C.; Rubio-Clemente, A. Advanced Oxidation Processes Based on Sulfate Radicals for Wastewater Treatment: Research Trends. Water 2021, 13, 2445. https://doi.org/10.3390/w13172445
Urán-Duque L, Saldarriaga-Molina JC, Rubio-Clemente A. Advanced Oxidation Processes Based on Sulfate Radicals for Wastewater Treatment: Research Trends. Water. 2021; 13(17):2445. https://doi.org/10.3390/w13172445
Chicago/Turabian StyleUrán-Duque, Lizeth, Julio César Saldarriaga-Molina, and Ainhoa Rubio-Clemente. 2021. "Advanced Oxidation Processes Based on Sulfate Radicals for Wastewater Treatment: Research Trends" Water 13, no. 17: 2445. https://doi.org/10.3390/w13172445
APA StyleUrán-Duque, L., Saldarriaga-Molina, J. C., & Rubio-Clemente, A. (2021). Advanced Oxidation Processes Based on Sulfate Radicals for Wastewater Treatment: Research Trends. Water, 13(17), 2445. https://doi.org/10.3390/w13172445