Environmental Flow Assessment of a Tropical River System Using Hydrological Index Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Precipitation
2.2.2. River Flow
3. Results
3.1. Precipitation
Mann-Kendall Trend and Sen’s Slope Analysis
3.2. River Flow
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DID | Department of Irrigation and Drainage |
E-Flow | Environmental Flow |
EM | Environmental Management |
EMC | Environmental Management Class |
FDC | Flow Duration Curve |
GEFC | Global Environmental Flow Calculator |
IHA | Indicators of Hydrological Alteration |
MCM | Million Cubic Meter |
Min | Minimum |
Max | Maximum |
SRB | Selangor River Basin |
References
- Zander, K.K.; Garnett, S.; Straton, A. Trade-offs between development, culture and conservation–Willingness to pay for tropical river management among urban Australians. J. Environ. Manag. 2010, 91, 2519–2528. [Google Scholar] [CrossRef] [Green Version]
- Hairan, M.H.; Jamil, N.R.; Looi, L.J.; Azmai, M.N.A. The assessment of environmental flow status in Southeast Asian Rivers: A review. J. Clean. Prod. 2021, 295, 126411. [Google Scholar] [CrossRef]
- Achieng, A.O.; Masese, F.O.; Kaunda-Arara, B. Fish assemblages and size-spectra variation among rivers of Lake Victoria Basin, Kenya. Ecol. Indic. 2020, 118, 106745. [Google Scholar] [CrossRef]
- Alvarez-Mieles, G.; Irvine, K.; Griensven, A.; Arias-Hidalgo, M.; Torres, A.; Mynett, A. Relationships between aquatic biotic communities and water quality in a tropical river–wetland system (Ecuador). Environ. Sci. Policy 2013, 34, 115–127. [Google Scholar] [CrossRef]
- Getirana, A.; Jung, H.C.; Van Den Hoek, J.; Ndehedehe, C.E. Hydropower dam operation strongly controls Lake Victoria’s freshwater storage variability. Sci. Total Environ. 2020, 726, 4. [Google Scholar] [CrossRef]
- Jumani, S.; Deitch, M.J.; Kaplan, D.; Anderson, E.P.; Krishnaswamy, J.; Lecours, V.; Whiles, M.R. River fragmentation and flow alteration metrics: A review of methods and directions for future research. Environ. Res. Lett. 2020, 15, 123009. [Google Scholar] [CrossRef]
- Lima, M.A.L.; Carvalho, A.R.; Nunes, M.; Angelini, R.; Doria, C.R.D.C. Declining fisheries and increasing prices: The economic cost of tropical rivers impoundment. Fish. Res. 2019, 221, 105399. [Google Scholar] [CrossRef]
- Runde, A.; Hallwass, G.; Silvano, R.A. Fishers’ knowledge indicates extensive socioecological impacts downstream of proposed dams in a Tropical River. One Earth 2020, 2, 255–268. [Google Scholar] [CrossRef]
- Hasan, H.H.; Razali, S.F.M.; Zaki, A.Z.I.A.; Hamzah, F.M. Integrated hydrological-hydraulic model for flood simulation in tropical urban catchment. Sustainability 2019, 11, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.F.; Ang, J.T.; Tiong, Y.J.; Mirzaei, M.; Amin, M.Z.M. Drought forecasting using SPI and EDI under RCP-8.5 climate change scenarios for Langat River Basin, Malaysia. Procedia Eng. 2016, 154, 710–717. [Google Scholar] [CrossRef] [Green Version]
- Masum, K.M.; Mansor, A.; Sah, S.A.M.; Lim, H.S. Effect of differential forest management on land-use change (LUC) in a tropical hill forest of Malaysia. J. Environ. Manag. 2017, 200, 468–474. [Google Scholar] [CrossRef]
- Lima, M.A.; Doria, C.R.; Carvalho, A.R.; Angelini, R. Fisheries and trophic structure of a large tropical river under impoundment. Ecol. Indic. 2020, 113, 106162. [Google Scholar] [CrossRef]
- Arthington, A.H.; Bhaduri, A.; Bunn, S.E.; Jackson, S.E.; Tharme, R.E.; Tickner, D.; Young, B.; Acreman, M.; Baker, N.; Capon, S.; et al. The brisbane declaration and global action agenda on environmental flows. Front. Environ. Sci. 2018, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Arthington, A.H. Environmental flows: History of assessment methods, ecosystem frameworks and global uptake. Ref. Modul. Earth Syst. Environ. Sci. 2020. [Google Scholar] [CrossRef]
- Camara, M.; Jamil, N.R.; Bin Abdullah, A.F.; Hashim, R.B.; Aliyu, A.G. Economic and efficiency based optimisation of water quality monitoring network for land use impact assessment. Sci. Total. Environ. 2020, 737, 139800. [Google Scholar] [CrossRef]
- LUAS. Sungai Selangor: State of the River Report 2015; LUAS: Shah Alam, Malaysia, 2017. [Google Scholar]
- Nurhidayu, S.; Azhar, M.; Shafuan, F.H.M. Long-term sediment pattern of the Selangor river basin, Malaysia impacted by land-use and climate changes. In Proceedings of the 36th IAHR World Congress 2015, Hague, The Netherlands, 28 June–3 July 2015; pp. 1995–1998. [Google Scholar]
- Hong, J.L.; Hong, K.A. Flow forecasting for Selangor River using artificial neural network models to improve reservoir operation efficiency. Int. J. Hybrid Inf. Technol. 2016, 9, 89–106. [Google Scholar] [CrossRef]
- Hong, D.; Hong, K.A. Drought identification, monitoring and forcasting for Selangor River Basin. Int. J. U E-Serv. Sci. Technol. 2016, 9, 53–66. [Google Scholar] [CrossRef]
- Fulazzaky, M.A.; Seong, T.W.; Masirin, M.I.M. Assessment of water quality status for the Selangor River in Malaysia. Water Air Soil Pollut. 2009, 205, 63–77. [Google Scholar] [CrossRef]
- Alsalahi, M.A.; Latif, M.T.; Ali, M.M.; Magam, S.M.; Wahid, N.B.A.; Khan, F.; Suratman, S. Distribution of surfactants along the estuarine area of Selangor River, Malaysia. Mar. Pollut. Bull. 2014, 80, 344–350. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Gu, P.; Feng, H.; Yin, Y.; Chen, W.; Cheng, B. Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Sci. Total. Environ. 2021, 760, 144244. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhai, X.; Shao, Q.; Yan, Z. Assessing temporal and spatial alterations of flow regimes in the regulated Huai River Basin, China. J. Hydrol. 2015, 529, 384–397. [Google Scholar] [CrossRef]
- Ali, R.O.; Abubaker, S.R. Trend analysis using mann-kendall, sen’s slope estimator test and innovative trend analysis method in Yangtze river basin, China: Review. Int. J. Eng. Technol. 2019, 8, 110–119. [Google Scholar]
- Dubey, A.; Singh, O.; Shekhar, S.; Pohshna, C. Assessment of environmental flow requirement using environmental management classes-flow duration curve for Narmada River. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 891–897. [Google Scholar] [CrossRef]
- Murthy, A. Water Levels Continue to Drop at Selangor Dams. 2014. Available online: https://www.malaymail.com/news/malaysia/2014/03/13/water-levels-continue-to-drop-at-selangor-dams/634001 (accessed on 29 August 2021).
- Richter, B.D.; Baumgartner, J.V.; Jennifer, P.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems | Un metro para evaluar alteraciones hidrologicas dentro de ecosistemas. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, D.; Lewis, Q.W.; Wu, J.; Huang, F. A framework to assess the cumulative impacts of dams on hydro-logical regime: A case study of the Yangtze River. Hydrol. Process. 2017, 31, 3045–3055. [Google Scholar] [CrossRef]
- Indicators of Hydrologic Alteration (IHA) User’s Manual, Version 7.1.; The Nature Conservancy: Arlington, VA, USA, 2009.
- Ismail, N. Issues and problems towards the sustainable dam management system in Malaysia. Int. J. Innov. Manag. Technol. 2014, 5, 6. [Google Scholar]
- Arévalo-Mejía, R.; Leblois, E.; Salinas-Tapia, H.; Mastachi-Loza, C.A.; Bâ, K.M.; Díaz-Delgado, C. A baseline assessment of hydrologic alteration degree for the Mexican catchments at gauged rivers (2016). Sci. Total Environ. 2020, 729, 4. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.N.; Nissenbaum, M.R.; Rickenbach, T.M. Climate change effects on summertime precipitation organization in the Southeast United States. Atmos. Res. 2018, 214, 348–363. [Google Scholar] [CrossRef]
Variable | Observations | Obs. with Missing Data | Obs. without Missing Data | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|---|---|---|
January | 27 | 0 | 27 | 0.065 | 16.077 | 4.750 | 2.903 |
February | 27 | 0 | 27 | 0.619 | 8.984 | 3.880 | 2.200 |
March | 27 | 0 | 27 | 0.758 | 11.832 | 4.215 | 2.396 |
April | 27 | 0 | 27 | 0.532 | 8.167 | 3.839 | 2.089 |
May | 27 | 0 | 27 | 0.167 | 13.168 | 3.699 | 3.396 |
June | 27 | 0 | 27 | 0.300 | 6.259 | 2.695 | 1.552 |
July | 27 | 0 | 27 | 0.000 | 4.935 | 2.601 | 1.284 |
August | 27 | 0 | 27 | 0.000 | 8.637 | 4.093 | 2.219 |
September | 27 | 0 | 27 | 0.333 | 16.500 | 4.079 | 3.380 |
October | 27 | 0 | 27 | 0.442 | 26.883 | 5.653 | 4.712 |
November | 27 | 0 | 27 | 1.500 | 17.433 | 7.393 | 3.548 |
December | 27 | 0 | 27 | 0.043 | 12.946 | 5.334 | 2.567 |
% | Reference Flow | Natural Flow | Slightly Modified | Moderately Modified | Largely Modified | Seriously Modified | Critically Modified |
---|---|---|---|---|---|---|---|
0.01 | 602 | 565 | 418 | 308 | 265 | 212 | 175 |
0.1 | 565 | 418 | 308 | 265 | 212 | 175 | 153 |
1 | 418 | 308 | 265 | 212 | 175 | 153 | 132 |
5 | 308 | 265 | 212 | 175 | 153 | 132 | 113 |
10 | 265 | 212 | 175 | 153 | 132 | 113 | 96.9 |
20 | 212 | 175 | 153 | 132 | 113 | 96.9 | 79.4 |
30 | 175 | 153 | 132 | 113 | 96.9 | 79.4 | 63.2 |
40 | 153 | 132 | 113 | 96.9 | 79.4 | 63.2 | 51.6 |
50 | 132 | 113 | 96.9 | 79.4 | 63.2 | 51.6 | 23.8 |
60 | 113 | 96.9 | 79.4 | 63.2 | 51.6 | 23.8 | 11.2 |
70 | 96.9 | 79.4 | 63.2 | 51.6 | 23.8 | 11.2 | 10.3 |
80 | 79.4 | 63.2 | 51.6 | 23.8 | 11.2 | 10.3 | 9.56 |
90 | 63.2 | 51.6 | 23.8 | 11.2 | 10.3 | 9.56 | 8.83 |
95 | 51.6 | 23.8 | 11.2 | 10.3 | 9.56 | 8.83 | 8.15 |
99 | 23.8 | 11.2 | 10.3 | 9.56 | 8.83 | 8.15 | 7.53 |
99.9 | 11.2 | 10.3 | 9.56 | 8.83 | 8.15 | 7.53 | 6.96 |
99.99 | 10.3 | 9.56 | 8.83 | 8.15 | 7.53 | 6.96 | 6.43 |
IHA Statistics Group | Hydrologic Parameters |
---|---|
Group 1: Magnitude of monthly water conditions | Mean/Median value for each calendar month |
Group 2: Magnitude and duration of annual extreme water conditions | 1-day minimum |
3-day minimum | |
7-day minimum | |
30-day minimum | |
90-day minimum | |
1-day maximum | |
3-day maximum | |
7-day maximum | |
30-day maximum | |
90-day maximum | |
Number of zero days | |
Base flow index | |
Group 3: Timing of annual extreme water conditions | Date of minimum |
Date of maximum | |
Group 4: Frequency and duration of low and high flow pulses | Low pulse count |
Low pulse duration | |
High pulse count | |
High pulse duration | |
The low pulse threshold | |
The high pulse threshold | |
Group 5: Rate and frequency of water condition changes | Rise rate |
Fall rate |
Medians | Coeff. of Disp. | Deviation Factor | Significance Count | |||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Medians | C.D. | Medians | C.D. | |
Parameter Group #1: Monthly Magnitude | ||||||||
January | 44.52 | 39.84 | 0.7588 | 0.4528 | 0.105 | 0.4032 | 0.2883 | 0.4434 |
February | 36.03 | 33.95 | 0.7618 | 0.3758 | 0.05793 | 0.5067 | 0.5926 | 0.04304 |
March | 42.68 | 34.02 | 0.6777 | 0.43 | 0.2029 | 0.3654 | 0.2933 | 0.2182 |
April | 63.45 | 57.1 | 0.5122 | 0.6723 | 0.1001 | 0.3126 | 0.5045 | 0.3483 |
May | 56.98 | 47.14 | 0.7597 | 0.6438 | 0.1726 | 0.1525 | 0.1992 | 0.7057 |
June | 37.35 | 36.23 | 0.6691 | 0.6352 | 0.03014 | 0.05061 | 0.5966 | 0.8989 |
July | 28.76 | 32.61 | 0.4799 | 0.3266 | 0.1341 | 0.3195 | 0.1361 | 0.5896 |
August | 22.05 | 33.12 | 0.5527 | 0.42 | 0.5024 | 0.2401 | 0.002002 | 0.4104 |
September | 32.53 | 35.98 | 1.026 | 0.4838 | 0.1059 | 0.5284 | 0.3524 | 0.06106 |
October | 53.17 | 53.52 | 0.8087 | 0.8391 | 0.006583 | 0.03765 | 0.9019 | 0.8859 |
November | 84.46 | 91.75 | 0.6123 | 0.5431 | 0.08622 | 0.1131 | 0.6196 | 0.7397 |
December | 81.18 | 57.13 | 0.6228 | 0.6037 | 0.2962 | 0.03059 | 0.1441 | 0.9069 |
Parameter Group #2: Magnitude and duration of annual extremes | ||||||||
1-day minimum | 15.93 | 23.75 | 0.6438 | 0.3903 | 0.4914 | 0.3937 | 0.00 | 0.3904 |
3-day minimum | 16.27 | 25.03 | 0.5473 | 0.3562 | 0.5383 | 0.3492 | 0.00 | 0.2192 |
7-day minimum | 17.11 | 25.48 | 0.5113 | 0.2283 | 0.489 | 0.5534 | 0.00 | 0.08809 |
30-day minimum | 21.43 | 29.43 | 0.4248 | 0.2963 | 0.3732 | 0.3025 | 0.002002 | 0.3514 |
90-day minimum | 28.85 | 34.46 | 0.5343 | 0.3421 | 0.1944 | 0.3597 | 0.05405 | 0.3283 |
1-day maximum | 200 | 233.4 | 0.2899 | 0.3901 | 0.1672 | 0.3456 | 0.008008 | 0.3163 |
3-day maximum | 177.9 | 188.3 | 0.3241 | 0.4233 | 0.05839 | 0.3061 | 0.3724 | 0.4454 |
7-day maximum | 156.7 | 156.5 | 0.3005 | 0.5082 | 0.001336 | 0.6913 | 0.8969 | 0.08809 |
30-day maximum | 121.1 | 105.2 | 0.2941 | 0.3893 | 0.1313 | 0.3239 | 0.1672 | 0.4044 |
90-day maximum | 89.44 | 83.72 | 0.381 | 0.3276 | 0.06392 | 0.1403 | 0.4074 | 0.5936 |
Number of zero days | 0 | 0 | 0 | 0 | ||||
Base flow index | 0.3295 | 0.454 | 0.5157 | 0.3204 | 0.3779 | 0.3787 | 0.00 | 0.4004 |
Parameter Group #3: Timing of annual extremes | ||||||||
Date of minimum | 236 | 183 | 0.166 | 0.4754 | 0.2896 | 1.864 | 0.01902 | 0.01602 |
Date of maximum | 324.5 | 311 | 0.151 | 0.4481 | 0.07377 | 1.968 | 0.2392 | 0.1872 |
Parameter Group #4: Frequency and duration of high and low flow pulses | ||||||||
Low pulse count | 14 | 14 | 0.6786 | 1.429 | 0 | 1.105 | 0.6486 | 0.03303 |
Low pulse duration | 3 | 2 | 0.6667 | 1.125 | 0.3333 | 0.6875 | 0.05005 | 0.2192 |
High pulse count | 15 | 22 | 0.5333 | 0.5455 | 0.4667 | 0.02273 | 0.00 | 0.967 |
High pulse duration | 3 | 2 | 0.6667 | 0.5 | 0.3333 | 0.25 | 0.1431 | 0.6336 |
Low Pulse Threshold | 27.31 | |||||||
High Pulse Threshold | 74.44 | |||||||
Parameter Group #5: Rate and frequency of change in conditions | ||||||||
Rise rate | 5.953 | 6.38 | 0.5111 | 0.5384 | 0.07182 | 0.05336 | 0.4384 | 0.8909 |
Fall rate | −3.45 | −6.29 | −0.3902 | −0.5334 | 0.8232 | 0.3669 | 0.00 | 0.4765 |
Number of reversals | 131 | 162 | 0.1756 | 0.321 | 0.2366 | 0.8282 | 0.00 | 0.1131 |
Pre-Impact Period: 1979–2002 | Post-Impact Period: 2003–2015 | |||||||
---|---|---|---|---|---|---|---|---|
Medians | Coeff. of Dispersion | Minimum | Maximum | Medians | Coeff. of Dispersion | Minimum | Maximum | |
January | 40.48 | 0.6131 | 18.91 | 123 | 39.84 | 0.3746 | 24.96 | 52.86 |
February | 36.93 | 0.7763 | 15.7 | 112.4 | 33.95 | 0.3696 | 21.53 | 74.63 |
March | 41.57 | 0.795 | 15.18 | 88.76 | 37.81 | 0.4839 | 19.27 | 89.44 |
April | 62.91 | 0.5166 | 17.17 | 112.7 | 63.6 | 0.3891 | 31.56 | 79.66 |
May | 55.97 | 0.5787 | 20.58 | 109.9 | 53.35 | 0.7352 | 23.9 | 92.38 |
June | 37.72 | 0.621 | 13.43 | 73.37 | 36.03 | 0.9611 | 21.17 | 87.69 |
July | 29.03 | 0.5463 | 3.9 | 71.01 | 33.8 | 0.4734 | 24.62 | 87.5 |
August | 22.37 | 0.7821 | 6.42 | 81.66 | 35.41 | 0.4722 | 20.22 | 87.29 |
September | 33.72 | 0.9031 | 9.375 | 113.9 | 37.77 | 0.8595 | 23.95 | 102.4 |
October | 52.31 | 0.6645 | 11.92 | 123.3 | 57.31 | 0.7847 | 33.41 | 97.94 |
November | 89.53 | 0.5315 | 29.14 | 153.6 | 97.91 | 0.5943 | 43.58 | 203 |
December | 62.14 | 0.8773 | 14.49 | 125.3 | 54.77 | 0.5684 | 46.4 | 98.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hairan, M.H.; Jamil, N.R.; Azmai, M.N.A.; Looi, L.J.; Camara, M. Environmental Flow Assessment of a Tropical River System Using Hydrological Index Methods. Water 2021, 13, 2477. https://doi.org/10.3390/w13182477
Hairan MH, Jamil NR, Azmai MNA, Looi LJ, Camara M. Environmental Flow Assessment of a Tropical River System Using Hydrological Index Methods. Water. 2021; 13(18):2477. https://doi.org/10.3390/w13182477
Chicago/Turabian StyleHairan, Mohammad Haroon, Nor Rohaizah Jamil, Mohammad Noor Amal Azmai, Ley Juen Looi, and Moriken Camara. 2021. "Environmental Flow Assessment of a Tropical River System Using Hydrological Index Methods" Water 13, no. 18: 2477. https://doi.org/10.3390/w13182477
APA StyleHairan, M. H., Jamil, N. R., Azmai, M. N. A., Looi, L. J., & Camara, M. (2021). Environmental Flow Assessment of a Tropical River System Using Hydrological Index Methods. Water, 13(18), 2477. https://doi.org/10.3390/w13182477