Ferrous Magnetic Nanoparticles for Arsenic Removal from Groundwater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticles Synthesis
2.2. MNPs Characterization
2.3. Adsorption Experiments
3. Results
3.1. Characterization of CoFe2O4 and MnFe2O4 Nanoparticles
3.2. Adsorptions Experiments
3.3. Adsorption Kinetics Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Flora, S.J.S. Arsenic: Chemistry, Occurrence, and Exposure. In Handbook of Arsenic Toxicology; Academic Press: Cambridge, MA, USA, 2015; pp. 1–49. [Google Scholar] [CrossRef]
- Litter, M.I.; Morgada, M.E.; Bundschuh, J. Possible treatments for arsenic removal in Latin American waters for human consumption. Environ. Pollut. 2020, 158, 1105–1118. [Google Scholar] [CrossRef]
- Das, N.; Khanikar, L.; Shah, R.; Das, A.; Goswami, R.; Kumar, M.; Sarma, K.P. Problem, perspective and challenges of arsenic contamination in the groundwater of brahmaputra flood plains and barak valley regions of assam, india. In Safe Sustain Use Arsenic-Contaminated Aquifers Gangetic Plain A Multidiscip; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Kumar, M.; Rahman, M.M.; Ramanathan, A.; Naidu, R. Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India. Sci. Total Environ. 2016, 539, 125–134. [Google Scholar] [CrossRef]
- Martinez-Miranda, M.M.; Rosero-Moreano, M.; Taborda-Ocampo, G. Occurrence, dietary exposure and risk assessment of aflatoxins in arepa, bread and rice. Food Control 2019, 98, 359–366. [Google Scholar] [CrossRef]
- Lou, J.; Yu, D.; Hristovski, K.D.; Fu, K.; Shen, Y.; Westerhoff, P.; Crittenden, J.C. Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. Environ. Sci. Technol. 2021, 55, 4287–4304. [Google Scholar] [CrossRef]
- Kameda, T.; Suzuki, Y.; Yoshioka, T. Removal of arsenic from an aqueous solution by coprecipitation with manganese oxide. J. Environ. Chem. Eng. 2014, 2, 2045–2049. [Google Scholar] [CrossRef]
- Tag El-Din, A.F.; El-Khouly, M.E.; Elshehy, E.A. Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ionexchanger for cesiumions removal from seawater. Microporous Mesoporous Mater. 2018, 265, 211–218. [Google Scholar] [CrossRef]
- Glass, S.; Mantel, T.; Appold, M.; Sen, S.; Usman, M.; Ernst, M.; Filiz, V. Amine-Terminated PAN Membranes as Anion-Adsorber Materials Chem. Ing. Tech. 2021, 93, 1396–1400. [Google Scholar] [CrossRef]
- Lam, B.; Déon, S.; Crini, N.M.; Crini, G.; Fievet, P. Polymerenhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Clean Prod. 2018, 171, 927–933. [Google Scholar] [CrossRef]
- López Guzmán, M.; Alarcón Herrera, M.T.; Irigoyen-Campuzano, J.R.; Torres-Castañón, L.A.; Reynoso-Cuevas, L. Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. Sci. Total Environ. 2019, 678, 181–187. [Google Scholar] [CrossRef]
- Abejón, A.; Garea, A.; Irabien, A. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption. Sep. Purif. Technol. 2015, 144, 46–53. [Google Scholar] [CrossRef]
- Bensaadi, S.; Nasrallah, N.; Amrane, A.; Trari, M.; Kerdjoudj, H.; Arous, O.; Amara, M. Dialysis and photo-electrodialysis processes using new synthesized polymeric membranes for the selective removal of bivalent cations. J. Environ. Chem. Eng. 2017, 5, 1037–1047. [Google Scholar] [CrossRef]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Khorzughy, S.H.; Eslamkish, T.; Ardejani, F.D.; Heydartaemeh, M.R. Cadmium removal from aqueous solutions by pumice and nanopumice. Korean J. Chem. Eng. 2015, 32, 88–96. [Google Scholar] [CrossRef]
- Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Zhang, J.; Liang, S.; Yue, Q.Y.; Li, Q.T.V. Nguyen Applicability of agricultural waste and byproducts for adsorptive removal of heavy metals from wastewater. Bioresour. Technol. 2013, 148, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Thanh, D.N.; Novák, P.; Vejpravova, J.; Vu, H.N.; Lederer, J.; Munshi, T. Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. J. Magn. Magn. Mater. 2018, 456, 451–460. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, S.; Han, M.; Su, Q.; Xia, L.; Hui, Z. Adsorption properties of magnetic magnetite nanoparticle for coexistent Cr (VI) and Cu (II) in mixed solution. Water 2020, 12, 446. [Google Scholar] [CrossRef] [Green Version]
- Nikic, J.; Tubic, A.; Watson, M.; Maletic, S.; Solic, M.; Majkic, T.; Agbaba, J. Arsenic Removal from Water by Green Synthesized Magnetic Nanoparticles. Water 2019, 11, 2520. [Google Scholar] [CrossRef] [Green Version]
- Bee, A.; Massart, R.; Neveu, S. Synthesis of very fine maghemite particles. J. Magn. Magn. Mater. 1995, 149, 6–9. [Google Scholar] [CrossRef]
- Sahoo, S.; Sahoo, P.K.; Sharma, A.; Satpati, A.K. Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sens. Actuators B Chem. 2020, 309, 127763. [Google Scholar] [CrossRef]
- Yue, L.; Zhang, S.; Zhao, H.; Feng, Y.; Wang, M.; An, L.; Zhang, X.; Mi, J. One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode. Solid State Ion. 2019, 329, 15–24. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, Y.; Lu, F.; Wei, F.; Wang, X.; Wang, S. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J. Hazard. Mater. 2014, 270, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Nilmoung, S.; Kidkhunthod, P.; Maensiri, S. The structural and electrochemical properties of CNF/MnFe2O4 composite nanostructures for supercapacitors. Mater. Chem. Phys. 2018, 220, 190–200. [Google Scholar] [CrossRef]
- Li, B.; Cao, H.; Shao, J.; Qu, M. Enhanced anode performances of the Fe3O4-Carbon-rGO three dimensional composite in lithium ion batteries. Chem. Commun. 2011, 47, 10374–10376. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ding, Z.; Zhao, X.; Wu, S.; Li, F.; Yue, M.; Liu, J.P. Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method. J. Appl. Phys. 2015. [Google Scholar] [CrossRef] [Green Version]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 2003, 117, 17A328. [Google Scholar] [CrossRef] [Green Version]
- Illés, E.; Tombácz, E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci. 2006, 295, 115–123. [Google Scholar] [CrossRef]
- Hu, H.; Xu, K. Physicochemical technologies for HRPs and risk control. In High-Risk Pollution Wastewater; Elsevier University: Nanjing, China, 2019; pp. 169–207. [Google Scholar] [CrossRef]
- Yang, J.C.; Yin, X.B. CoFe2O4 @MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity. Sci. Rep. 2017, 7, 40955. [Google Scholar] [CrossRef]
- Asadi, R.; Abdollahi, H.; Gharabaghi, M.; Boroumand, Z. Effective removal of Zn (II) ions from aqueous solution by the magnetic MnFe2O4 and CoFe2O4 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsorption, and desorption. Adv. Powder Technol. 2020, 31, 1480–1489. [Google Scholar] [CrossRef]
- Zhang, S.; Niu, H.; Cai, Y.; Zhao, X.; Shi, Y. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 2010, 158, 599–607. [Google Scholar] [CrossRef]
- Secretaría de Salud, NOM-127-SSA1-1994, Salud Ambiental, Agua Para uso y Consumo Humano-Límites Permisibles de Calidad y Tratamientos a que debe Someterse el Agua para su Potabilización; Diario Oficial de la Federación: Ciudad de México, México. 1994; pp. 1–5. Available online: http://www.salud.gob.mx/unidades/cdi/nom/127ssa14.html (accessed on 9 September 2021).
- Iconaru, S.L.; Guégan, R.; Popa, C.L.; Motelica-Heino, M.; Ciobanu, C.S.; Predoi, D. Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Appl. Clay Sci. 2016, 134, 128–135. [Google Scholar] [CrossRef]
- Podder, M.S.; Majumder, C.B. SD/MnFe2O4 composite, a biosorbent for As(III) and As(V) removal from wastewater: Optimization and isotherm study. J. Mol. Liq. 2015, 212, 382–404. [Google Scholar] [CrossRef]
- Maji, S.K.; Pal, A.; Pal, T. Arsenic removal from real-life groundwater by adsorption on laterite soil. J. Hazard. Mater. 2008, 151, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; DasGupta, S.; Basu, J.K.; De, S. Adsorption of arsenite using natural laterite as adsorbent. Sep. Purif. Technol. 2007, 55, 350–359. [Google Scholar] [CrossRef]
- Reddy, K.J.; McDonald, K.J.; King, H. A novel arsenic removal process for water using cupric oxide nanoparticles. J. Colloid Interface Sci. 2013, 397, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.S.; Qu, J.H.; Liu, H.J.; Liu, R.P.; Wu, R.C. Preparation and evaluation of a novel Fe Mn binary oxide adsorbent for effective arsenite removal. Water Res. 2007, 41, 1921–1928. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, C.; Choi, N.; Rengaraj, S.; Yi, J. Arsenic removal using mesoporous alumina prepared via a templating method. Environ. Sci. Technol. 2004, 38, 924–931. [Google Scholar] [CrossRef]
- Van Tran, T.; Cao, V.D.; Nguyen, V.H.; Hoang, B.N.; Vo, D.V.N.; Nguyen, T.D.; Bach, L.G. MIL-53 (Fe) derived magnetic porous carbon as a robust adsorbent for the removal of phenolic compounds under the optimized conditions. J. Environ. Chem. Eng. 2020, 8, 102902. [Google Scholar] [CrossRef]
- Tuutijärvi, T.; Lu, J.; Sillanpää, M.; Chen, G. As(V) adsorption on maghemite nanoparticles. J. Hazard. Mater. 2009, 166, 1415–1420. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
As µg/L | 32.00 |
pH | 8.04 |
Conductivity (μs/cm) | 542.50 |
Fluoride (mg/L) | 4.12 |
Na+ (mg/L) | 46.14 |
K+ (mg/L) | 7.94 |
Ca+ (mg/L) | 61.00 |
Mg+ (mg/L) | 1.54 |
NO3− (mg/L) | 37.50 |
Cl− (mg/L) | 23.14 |
CO32− (mg/L) | 0 |
HCO3− (mg/L) | 138.60 |
SO4 (mg/L) | 59.76 |
Total alcalinity (mg CaCO3/L) | 138.60 |
Hardness (mg/L) | <5 |
Kinetic Model | Equation | Constant | Value CoFe2O4 | Value MnFe2O4 |
---|---|---|---|---|
First order | Ln Ct = Ln Co − K × t | K (R2) | 17.47 (0.8576) | 16.75 (0.8532) |
Second order * | K (R2) | 6.66 × 10113 (0.99) | 8.33 × 1027 (0.99) |
MNPs | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qm (mg/g) | R2 | KF (mg/g) | n | R2 | ||
As (III) | CoFe2O4 | 250 | 0.99 | 1.27 | 0.28 | 0.98 |
MnFe2O4 | 238.1 | 0.99 | 1.38 | 0.29 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Amaya, C.G.; Alarcón-Herrera, M.T.; Astudillo-Sánchez, P.D.; Lozano-Morales, S.A.; Licea-Jiménez, L.; Reynoso-Cuevas, L. Ferrous Magnetic Nanoparticles for Arsenic Removal from Groundwater. Water 2021, 13, 2511. https://doi.org/10.3390/w13182511
Morales-Amaya CG, Alarcón-Herrera MT, Astudillo-Sánchez PD, Lozano-Morales SA, Licea-Jiménez L, Reynoso-Cuevas L. Ferrous Magnetic Nanoparticles for Arsenic Removal from Groundwater. Water. 2021; 13(18):2511. https://doi.org/10.3390/w13182511
Chicago/Turabian StyleMorales-Amaya, Corazón G., María T. Alarcón-Herrera, Pablo D. Astudillo-Sánchez, Samuel A. Lozano-Morales, Liliana Licea-Jiménez, and Liliana Reynoso-Cuevas. 2021. "Ferrous Magnetic Nanoparticles for Arsenic Removal from Groundwater" Water 13, no. 18: 2511. https://doi.org/10.3390/w13182511
APA StyleMorales-Amaya, C. G., Alarcón-Herrera, M. T., Astudillo-Sánchez, P. D., Lozano-Morales, S. A., Licea-Jiménez, L., & Reynoso-Cuevas, L. (2021). Ferrous Magnetic Nanoparticles for Arsenic Removal from Groundwater. Water, 13(18), 2511. https://doi.org/10.3390/w13182511