MIS 5.5 Highstand and Future Sea Level Flooding at 2100 and 2300 in Tectonically Stable Areas of Central Mediterranean Sea: Sardinia and the Pontina Plain (Southern Latium), Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Work
2.1.1. Pontina Plain
2.1.2. Sardinia
2.2. Digital Terrain Models
3. Results
3.1. Geomorphology and Altitude of MIS 5.5 in Sardinia Sites
3.1.1. Cagliari Coastal Plains
3.1.2. Oristano North Coastal Plains and Sinis Peninsula
3.1.3. Olbia Gulf and Coastal Plains
3.2. Geomorphology and Altitude of MIS 5.5 Transgression in Pontina Plain
3.3. Maps of the Pontina Plain
3.4. Maps of Cagliari Plain
3.5. Maps of Oristano Plain
3.6. Maps of Olbia Plain
4. Discussion
4.1. Pontina Plain
4.2. Sardinia
4.2.1. Cagliari Coastal Plain
4.2.2. Oristano–Sinis Coastal Plain
4.2.3. Olbia Coastal Plain and Tavolara Island
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vacchi, M.; Joyse, K.M.; Kopp, R.E.; Marriner, N.; Kaniewski, D.; Rovere, A. Climate pacing of millennial sea-level change var-iability in the central and western Mediterranean. Nat. Commun. 2021, 12, 4013. [Google Scholar] [CrossRef] [PubMed]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quat. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Presti, V.L.; Mastronuzzi, G.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S.; et al. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Marsico, A.; Lisco, S.; Presti, V.L.; Antonioli, F.; Amorosi, A.; Anzidei, M.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; et al. Flooding scenario for four Italian coastal plains using three relative sea level rise models. J. Maps 2017, 13, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Bonaldo, D.; Antonioli, F.; Archetti, R.; Bezzi, A.; Correggiari, A.; Davolio, S.; De Falco, G.; Fantini, M.; Fontolan, G.; Furlani, S.; et al. Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: Lessons and challenges from the Adriatic Sea, Italy. J. Coast. Conserv. 2019, 23, 19–37. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Nicolai, M.; Okem, A.; Petzold, J.; et al. (Eds.) IPCC, 2019: Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; Cambridge University Press: New York, NY, USA, 2019. [Google Scholar]
- Antonioli, F.; Ferranti, L.; Stocchi, P.; Deiana, G.; Presti, V.L.; Furlani, S.; Marino, C.; Orru, P.; Scicchitano, G.; Trainito, E.; et al. Morphometry and elevation of the last interglacial tidal notches in tectonically stable coasts of the Mediterranean Sea. Earth-Sci. Rev. 2018, 185, 600–623. [Google Scholar] [CrossRef]
- Ferranti, L.; Antonioli, F.; Mauz, B.; Amorosi, A.; Pra, G.D.; Mastronuzzi, G.; Monaco, C.; Orrù, P.; Pappalardo, M.; Radtke, U.; et al. Markers of the last interglacial sea-level high stand along the coast of Italy: Tectonic implications. Quat. Int. 2006, 145–146, 30–54. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.-F. Modeling the climate response to astronomical and CO2 forcings. Comptes Rendus De L‘acad. Des. Sci. 1996, 323, 1–16. [Google Scholar]
- Loutre, M.-F.; Berger, A. Future climatic changes: Are we entering an exceptionally long interglacial? Clim. Chang. 2000, 46, 61–90. [Google Scholar] [CrossRef]
- Berger, A.L. Long-term variations of daily insolation and Quaternary climatic change. J. Atmos. Sci. 1978, 35, 2362–2367. [Google Scholar] [CrossRef]
- Shackleton, N.J.; Hall, M.A.; Vincent, E. Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 2000, 15, 565–569. [Google Scholar] [CrossRef]
- Rovere, A.; Raymo, M.E.; Vacchi, M.; Lorscheid, T.; Stocchi, P.; Gómez-Pujol, L.; Harris, D.L.; Casella, E.; O’Leary, M.J.; Hearty, P.J. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world. Earth Sci. Rev. 2016, 159, 404–427. [Google Scholar] [CrossRef] [Green Version]
- Berger, A. Climate: An exceptionally long interglacial ahead? Science 2002, 297, 1287–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonioli, F.; De Falco, G.; Lo Presti, V.; Moretti, L.; Scardino, G.; Anzidei, M.; Bonaldo, D.; Carniel, S.; Leoni, G.; Furlani, S.; et al. Relative sea-level rise and potential submersion risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water 2020, 12, 2173. [Google Scholar] [CrossRef]
- Ferranti, L.; Antonioli, F.; Monaco, C.; Scicchitano, G.; Spampinato, C.R. Uplifted Late Holocene shorelines along the coasts of the Calabrian Arc: Geodynamic and seismotectonic implications. Ital. J. Geosci. 2017, 136, 454–470. [Google Scholar] [CrossRef]
- Aral, M.M.; Chang, B. Spatial variation of sea level rise at Atlantic and Mediterranean coastline of Europe. Water 2017, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Ocean, cryosphere and sea level change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Ferranti, L.; Antonioli, F.; Anzidei, M.; Monaco, C.; Stocchi, P. The timescale and spatial extent of recent vertical tectonic motions in Italy: Insights from relative sea-level changes studies. J. Virtual Explor. 2010, 36, 23. [Google Scholar] [CrossRef]
- Antonioli, F.; Silenzi, S.; Vittori, E.; Villani, C. Sea level changes and tectonic mobility: Precise measurements in three coastlines of Italy considered stable during the last 125 kyrs. Phys. Chem. Earth 1999, 24, 337–342. [Google Scholar] [CrossRef]
- Issel, A. Lembi fossiliferi quaternari e recenti osservati nella Sardegna meriodionale dal Prof. D. Lovisato. Rend. Accad. Sci. 1914, 5, 759–770. [Google Scholar]
- Ulzega, A.; Ozer, A. Comptes-Rendus de 1′Excursion Table Ronde sur le Tyrsrhénien de Sardaigne; INQUA. Sous Commission Mediterranee-mer Noire: Cagliari, Italy, 1980; pp. 24–46. [Google Scholar]
- Ulzega, A.; Hearty, J.P. Geomorphology, stratigraphy and geochronology of late quaternary marine deposits in Sardinia. Z. Geomorphol. Suppl. 1986, 62, 119–129. [Google Scholar]
- Cobby, D.M.; Mason, D.C.; Davenport, I.J. Image processing of airborne scanning laser altimetry data for improved river flood modelling. ISPRS J. Photogramm. Remote Sens. 2001, 56, 121–138. [Google Scholar] [CrossRef]
- EMODnet. Bathymetry Viewing and Download Service. Available online: https://portal.emodnet-bathymetry.eu/ (accessed on 16 December 2020).
- Global Mapper—All-in-One GIS Software. Available online: https://www.bluemarblegeo.com/products/global-mapper.php (accessed on 15 April 2020).
- Lodolo, E.; Galassi, G.; Spada, G.; Zecchin, M.; Civile, D.; Bressoux, M. Post-LGM coastline evolution of the NW Sicilian Channel: Comparing high-resolution geophysical data with Glacial Isostatic Adjustment modeling. PLoS ONE 2020, 15, e0228087. [Google Scholar] [CrossRef]
- Segre, A.G. Linee di riva sommerse e morfologia della piattaforma continentale relativa alla trasgressione marina versiliana. Quaternaria 1968, 11, 1–14. [Google Scholar]
- Orrù, P.E.; Antonioli, F.; Lambeck, K.; Verrubbi, V. Holocene sea-level change in the Cagliari coastal plain (South Sardinia, Italy). Quat. Nova 2004, 8, 193–210. [Google Scholar]
- Peirano, A.; Morri, C.; Bianchi, C.; Aguirre, J.; Antonioli, F.; Calzetta, G.; Carobene, L.; Mastronuzzi, G.; Orrù, P. The Mediterranean coral Cladocora caespitosa: A proxy for past climate fluctuations? Glob. Planet. Chang. 2003, 40, 195–200. [Google Scholar] [CrossRef]
- Deiana, G.; Meleddu, A.; Paliaga, E.; Todde, S.; Orrù, P. Continental slope geomorphology: Landslides and pockforms of Southern Sardinian margin (Italy). Geogr. Fis. Dinam. Quat. 2016, 39, 129–136. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Lambeck, K.; Auriemma, R.; Gaddi, D.; Furlani, S.; Orrù, P.E.; Solinas, E.; Gaspari, A.; Karinja, S.; et al. Sea-level change during the Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from archaeological and geomorphological data. Quat. Sci. Rev. 2007, 26, 2463–2486. [Google Scholar] [CrossRef]
- Buosi, C.; Del Rio, M.; Orrù, P.; Pittau, P.; Scanu, G.G.; Solinas, E. Sea level changes and past vegetation in the Punic period (5th–4th century BC): Archaeological, geomorphological and palaeobotanical indicators (South Sardinia—West Mediterranean Sea). Quat. Int. 2017, 439, 141–157. [Google Scholar] [CrossRef]
- Lecca, L.; Carboni, S. The tyrrhenian section of San Giovanni di Sinis (Sardinia): Stratigraphic record of an irregular single high stand. Riv. Ital. Paléontol. Strat. 2007, 113. [Google Scholar] [CrossRef]
- Orrù, P.E.; Antonioli, F.; Hearty, P.J.; Radtke, U. Chronostratigraphic confirmation of MIS 5 age of a baymouth bar at Is Arenas (Cagliari, Italy). Quat. Int. 2010, 232, 169–178. [Google Scholar] [CrossRef]
- Carboni, S.; Lecca, L.; Hillaire-Marcel, C.; Ghaleb, B. MIS 5e at San Giovanni di Sinis (Sardinia, Italy): Stratigraphy, U/Th dating and “eustatic” inferences. Quat. Int. 2014, 328–329, 21–30. [Google Scholar] [CrossRef]
- Segre, A.G. Il Quaternario del Golfo di Terranova Pausania (Olbia) e la sua fauna malacologica. Boll. Serv. Geol. Ital. 1954, 76, 45–73. [Google Scholar]
- Porqueddu, A.; Antonioli, F.; Rubens, D.; Gavini, V.; Trainito, E.; Verrubbi, V. Relative sea level change in Olbia Gulf (Sardinia, Italy), a historically important Mediterranean harbour. Quat. Int. 2011, 232, 21–30. [Google Scholar] [CrossRef]
- Blanc, A.C. Stratigrafia del Canale Mussolini nell’Agro Pontino. Soc. Toscana Sci. Nat. 1935, 54, 52–56. [Google Scholar]
- Arnoldus-Huyzendveld, A.; Perotto, C.; Sarandrea, P. I Suoli della Provincia di Latina. Carta, Database e Applicazioni; Gangemi Editore: Rome, Italy, 2009. [Google Scholar]
- Liboni, A. Affioramento fossile con malacofauna tra il Quadrato e Casale Nuovo. Borgo Sabotino—Latina). Studi Per L’ecologia Del Quat. 1983, 25, 131–134. [Google Scholar]
- Hearty, P.J. An inventory of Last Interglacial (sensu lato) age deposits from the Mediterranean Basin: A study of Isoleucine epimerization and U-series dating. Z. Fur Geomorphol. Suppl. 1986, 62, 51–69. [Google Scholar]
- Blanc, A.C.; De Vries, M.; Follieri, M. A first C14 date for the Würm I chronology on the Italian coast. Quaternaria 1957, 4, 83–89. [Google Scholar]
- Dai-Pra, G.; Arnoldus-Huyzendveld, A. Lineamenti stratigrafici, morfologici e podologici della fascia costiera dal fiume Tevere al fiume Astura (Lazio, Italia Centrale). Geol. Romana 1984, 23, 1–12. [Google Scholar]
- Nisi, M.F.; Antonioli, F.; Pra, G.D.; Leoni, G.; Silenzi, S. Coastal deformation between the Versilia and the Garigliano plains (Italy) since the last interglacial stage. J. Quat. Sci. 2003, 18, 709–721. [Google Scholar] [CrossRef]
- Barbieri, M.; Carrara, C.; Castorina, F.; Dai-Pra, G.; Esu, D.; Gliozzi, E.; Paganin, G.; Sadori, L. Multidisciplinary study of Middle–Upper Pleistocene deposits in a core from the Piana Pontina (central Italy). G. Geol. 1999, 61, 47–73. [Google Scholar]
- Antonioli, F.; Dai-Pra, G.; Hearty, P.J. I sedimenti quaternari nella fascia costiera della Piana di Fondi (Lazio meridionale). Boll. Soc. Geol. Ital. 1988, 107, 491–501. [Google Scholar]
- Blanc, A.C.; Segre, A.G. Le Quaternaire du Mont Circe’. Livret Guide “Excursion au Mont Circe”. In Proceedings of the IV International Meeting INQUA, Rome, Italy, 16–20 September 1953; pp. 23–108. [Google Scholar]
- Segre, A.G. Nota sui rilevamenti eseguiti nel Foglio 158 Latina della Carta Geologica d’Italia. Boll. Serv. Geol. It. 1957, 73, 569–584. [Google Scholar]
- Durante, S. Sul Tirreniano e la malacofauna della Grotta del Fossellone (Circeo). Quaternaria 1975, 18, 331–347. [Google Scholar]
- Hearty, P.J.; Dai-Pra, G. Aminostratigraphy of Quaternary marine deposits in the Lazio region of central Italy in Dating Mediterranean shoreline. Z. Für Geomorphologie. Suppl. 1986, 62, 131–140. [Google Scholar]
- Bigi, G.; Casentino, D.; Parlotto, M. Modello Litostratigrafico-Strutturale della Regione Lazio. Scala 1:250.000; Geological Map of Regione Lazio, Università degli Studi di Roma “La Sapienza”: Rome, Italy, 1988. [Google Scholar]
- Serva, L.; Brunamonte, F. Subsidence in the Pontina Plain, Italy. Bull. Int. Assoc. Eng. Geol. 2006, 66, 125–134. [Google Scholar] [CrossRef]
- Blanc, A.C. Una spiaggia pleistocenica a Strombus bubonius presso Palidoro (Roma). Rend. Accad. Naz. Lincei 1936, 23, 200–204. [Google Scholar]
- Farina, S. Late Pleistocene-Holocene mammals from “Canale delle Acque Alte (Canale Mussolini)” (Agro Pontino, Latium) B. Soc. Paleontol. Ital. 2011, 50, 11–22. [Google Scholar]
- Antonioli, F.; Presti, V.L.; Rovere, A.; Ferranti, L.; Anzidei, M.; Furlani, S.; Mastronuzzi, G.; Orru, P.E.; Scicchitano, G.; Sannino, G.; et al. Tidal notches in Mediterranean Sea: A comprehensive analysis. Quat. Sci. Rev. 2015, 119, 66–84. [Google Scholar] [CrossRef]
- Hearty, P.J.; Rovere, A.; Sandstrom, M.R.; O’Leary, M.J.; Roberts, D.; Raymo, M.E. Pliocene-pleistocene stratigraphy and sea-level estimates, republic of South Africa with implications for a 400 ppmv CO 2 World. Paleoceanogr. Paleoclimatol. 2020, 35, 7. [Google Scholar] [CrossRef]
- Gilford, D.M.; Ashe, E.; DeConto, R.M.; Kopp, R.E.; Pollard, D.; Rovere, A. Could the last interglacial constrain projections of future antarctic ice mass loss and sea-level rise? J. Geophys. Res. Earth Surf. 2020, 125. [Google Scholar] [CrossRef]
- Ashkenazy, Y.; Eisenman, I.; Gildor, H.; Tziperman, E. The effect of Milankovitch variations in insolation on equatorial seasonality. J. Clim. 2010, 23, 6133–6142. [Google Scholar] [CrossRef] [Green Version]
- Kirkby, J. Cosmic Rays and Climate, Surveys in Geophysics. Available online: http://arxiv.org/PS_cache/arxiv/pdf/0804/0804.1938v1.pdf (accessed on 26 March 2008).
- Manara, V.; Brunetti, M.; Celozzi, A.; Maugeri, M.; Sanchez-Lorenzo, A.; Wild, M. Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013). Atmos. Chem. Phys. Discuss. 2016, 16, 11145–11161. [Google Scholar] [CrossRef] [Green Version]
- Marsh, G.E. Interglacials, Milankovitch cycles, solar activity, and carbon dioxide. J. Clim. 2014, 2014, 345482. [Google Scholar] [CrossRef] [Green Version]
- Smulsky, J.J. A new theory of change in the insolation of the earth over millions of years against marine isotope stages. Izv. Atmos. Ocean. Phys. 2020, 56, 721–747. [Google Scholar] [CrossRef]
N | a Site | b DTM Resolution ± Vertical Accuracy (m) | c Map Year | d Projection 2100 IPCC 2019 AR 8.5, Upper Likely Range mm | E Projection 2100 IPCC 2019 AR 8.5, Median Range mm | F Projection 2300 IPCC 2019 AR 8.5, Upper Likely Range mm | g Projection 2300 IPCC 2019 AR 8.5, Median Range mm | h GIA mm/y | i Vertical Movements mm/y | l Total mm IPCC 2100 Upper Likely Range | m Total mm IPCC 2100 Median Range | n Total mm IPCC 2300 Upper Likely Range | o Total mm IPCC 2300 Median Range | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Cagliari | LIDAR 5 × 5 (±0.2) | EMODNET 85 × 85 (±1.0) | 2008 | 1100 | 840 | 5200 | 3700 | 0.57 | - | 1152 | 893 | 5252 | 3752 |
2 | Oristano | LIDAR 1 × 1 (±0.2) | EMODNET 85 × 85 (±1.0) | 2008 | 1100 | 840 | 5200 | 3700 | 0.57 | - | 1152 | 893 | 5252 | 3752 |
3 | Olbia | LIDAR 1 × 1 (±0.2) | EMODNET 85 × 85 (±1.0) | 2008 | 1100 | 840 | 5200 | 3700 | 0.62 | - | 1157 | 897 | 5256 | 3756 |
4 | Pontina | 25 × 25 ±1 | EMODNET 85 × 85 (±1.0) | 2010 | 1100 | 840 | 5200 | 3700 | 0.44 | −0.1 | 1149 | 889 | 5249 | 3749 |
Sites | Altitude LGM Model, [2]. m | Altitude LGM Model, [27]. m | Observed LGM Altitude. m | Altitude MIS 5.5 Model, [7]. m | Observed MIS 5.5 Altitude. m This Paper | |
---|---|---|---|---|---|---|
Cagliari | −129.2 | −122 | −125 | +8.4 | +4.8 | |
Oristano | −126.8 | −124 | −130 | +8.6 | +6.5 | |
Olbia | −127.5 | −122 | −126 | +8.5 | +4.9 | |
Pontina | −117,8 | −117 | ----- | +8.2 | +7.96, −12 |
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
n. | Site | Coordinates | MIS 5.5 Altitude (m) | Kind of Marker | Age | References |
1 | Fosso Moscarello Gnif Gnaf, Santa Maria | 41.4615 12.8112 | 10 ± 1 | Fossil beach containing Persistrombus latus | Senegalese Fauna Aminoacid | [41,42] |
2 | Canale Mussolini | 41.4483 12.8107 | 5.1 ± 0.1 | Fossil beach containing Persistrombus latus | Senegalese Fauna Aminoacid | [39,43,44] |
3 | Nuclear power plant Borgo Sabotino | 41.4231 12.8053 | −4.3 + 5 ± 0.5 | Fossil beach containing Persistrombus latus | Senegalese Fauna | [44] |
4 | Pontinia 1 | 41.4129 13.0449 | +5.3 ± 0.5 | Lagoonal facies with Cerastoderma sp. | Geomorphological correlation | [20,45] |
5 | Pontinia 2 | 41.4172 13.0600 | +4.4 ± 0.5 | Lagoonal facies with Cerastoderma | Geomorphological correlation | [20,45] |
6 | Pontinia 3 | 41.4323 13.0721 | +2.3 ± 0.5 | Lagoonal facies with Cerastoderma sp. | Geomorphological correlation | [20,45] |
7 | Pontinia 4 | 41.4355 13.0864 | +0.8 ± 0.5 | Lagoonal facies with Cerastoderma sp. | Geomorphological correlation | [20,45] |
7.1 | Check in field | 41.434771 13.062667 | −1 ± 0.5 | Cerastoderma e Tapes, travertino con incrostazioni | Geomorphological correlation | This paper |
7.2 | Check in field | 41.3757510 13.1281060 | −2 ± 0.5 | Lagoonal facies with Cerastoderma sp. | Geomorphological correlation | This paper |
7.3 | Check in field | 41.363875 13.140631 | −3 ± 0.5 | Lagoonal facies with Cerastoderma edulis, Tapes decussatus, Nassa mutabilis | Geomorphological correlation | This paper |
8 | Pontinia 5 | 41.4424 13.0751 | −0.5 ± 0.5 | Lagoonal facies with Cerastoderma | Geomorphological correlation | [20,45] |
9 | Mezzaluna core | 41 27 47 13 06 01 | −14.30 − 11.41 ± 0.5 | Venus and Cerastoderma | Pollen Analysis, U\Th and aminoacid | [46] |
10 | Borgo Vodige 1 | 41.3571 13.1317 | 1 ± 0.5 | Lagoonal facies with Cerastoderma | Aminoacid | [20,45] |
11 | Borgo Vodige 2 | 41.3497 13.1293 | −0.6 ± 0.5 | Lagoonal facies with Cerastoderma | Aminoacid | [20,45] |
12 | Borgo Vodige 3 | 41.350 13.117 | −1.80 ± 0.5 | Lagoonal facies with Cerastoderma | Aminoacid | [20,45] |
13 | Terracina | 41.288 13.260 | 7.96 ± 0.1 | Tidal notch | Geomorphological correlation at 5 km from aged MIS 5.5 deposit | [7] |
14 | Fondi APT4 | 41.0065 13.331 | −6\−24 | Marsh with Cerastoderma Aminozone E | Aminoacid | [47] |
15 | Sperlonga | 41.229691 13.502001 | 7.30 ± 0.5 | Geomorphological correlation | [8] | |
16 | Sperlonga | 41.2187 13.5321 | 6.53 ± 0.1 | Tidal notch | Geomorphological correlation | [47] |
17 | Gaeta | 41.2046 13.5774 | 5.92 ± 0.1 | Tidal notch | Geomorphological correlation | [47] |
A | B | C | D | E | F | G | H | I | L | M | N |
---|---|---|---|---|---|---|---|---|---|---|---|
Site n° | Coastal Site | Exposure Direction | Max Fetch Km | Coastal Material | Wave Energy Flux kW/m | Geomorphology | Flooded Area MIS 5.5 km2 | Flooded Area IPCC 2300 km2 | Flooded Area IPCC 2100 km2 | Exposed Coastline Length km | Human-Made Structures |
1 | Pontina Plain * | N-W | 308 | sand | 3–4 | Embayed Beach | 396.3 | 303.7 | 61 | 104.9 | Towns and Agricultural crops |
2 | Cagliari | S | 208 | sand | 4–5 | Barrier and lagoon systems | 131.5 | 87.2 | 27.5 | 29.6 | Towns and Agricultural crops |
3 | Oristano | W | 357 | sand | 6–7 | Barrier and lagoon systems | 376.8 | 230.0 | 53.5 | 102.7 | Towns and Agricultural crops |
4 | Olbia | E | 231 | sand | 3–4 | Rias + Barrier and lagoon systems | 24.7 | 16.3 | 4.53 | 30.7 | Towns, harbor and industrial hub |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deiana, G.; Antonioli, F.; Moretti, L.; Orrù, P.E.; Randazzo, G.; Lo Presti, V. MIS 5.5 Highstand and Future Sea Level Flooding at 2100 and 2300 in Tectonically Stable Areas of Central Mediterranean Sea: Sardinia and the Pontina Plain (Southern Latium), Italy. Water 2021, 13, 2597. https://doi.org/10.3390/w13182597
Deiana G, Antonioli F, Moretti L, Orrù PE, Randazzo G, Lo Presti V. MIS 5.5 Highstand and Future Sea Level Flooding at 2100 and 2300 in Tectonically Stable Areas of Central Mediterranean Sea: Sardinia and the Pontina Plain (Southern Latium), Italy. Water. 2021; 13(18):2597. https://doi.org/10.3390/w13182597
Chicago/Turabian StyleDeiana, Giacomo, Fabrizio Antonioli, Lorenzo Moretti, Paolo Emanuele Orrù, Giovanni Randazzo, and Valeria Lo Presti. 2021. "MIS 5.5 Highstand and Future Sea Level Flooding at 2100 and 2300 in Tectonically Stable Areas of Central Mediterranean Sea: Sardinia and the Pontina Plain (Southern Latium), Italy" Water 13, no. 18: 2597. https://doi.org/10.3390/w13182597
APA StyleDeiana, G., Antonioli, F., Moretti, L., Orrù, P. E., Randazzo, G., & Lo Presti, V. (2021). MIS 5.5 Highstand and Future Sea Level Flooding at 2100 and 2300 in Tectonically Stable Areas of Central Mediterranean Sea: Sardinia and the Pontina Plain (Southern Latium), Italy. Water, 13(18), 2597. https://doi.org/10.3390/w13182597