Characterisation of Organic Matter and Its Transformation Processes in On-Site Wastewater Effluent Percolating through Soil Using Fluorescence Spectroscopic Methods and Parallel Factor Analysis (PARAFAC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Spectral Analysis
2.3. Data Processing and Analysis
2.3.1. PARAFAC Analysis
2.3.2. Fluorescence Indices
2.3.3. Principal Component Analysis (PCA)
3. Results
3.1. PARAFAC Analysis
3.2. DOM Characterisation in Effluent and Trench Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooper, J.A.; Loomis, G.W.; Kalen, D.V.; Amador, J.A. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems. J. Environ. Qual. 2015, 44, 953–962. [Google Scholar] [CrossRef]
- Dubber, D.; Gill, L. Application of on-site wastewater treatment in Ireland and perspectives on its sustainability. Sustainability 2014, 6, 1623–1642. [Google Scholar] [CrossRef] [Green Version]
- Siegrist, R.L. Decentralized Water Reclamation Engineering. A Curriculum Workbook; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Beal, C.D.; Rassam, D.W.; Gardner, E.A.; Kirchhof, G.; Menzies, N.W. Influence of hydraulic loading and effluent flux on surface surcharging in soil absorption systems. J. Hydrol. Eng. 2008, 13, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Bouma, J. Unsaturated flow during soil treatment of septic tank effluent. J. Environ. Eng. Div. 1975, 101, 967–983. [Google Scholar] [CrossRef]
- Beal, C.D.; Gardner, E.A.; Menzies, N.W. Process, performance, and pollution potential: A review of septic tank-soil absorption systems. Aust. J. Soil Res. 2005, 43, 781–802. [Google Scholar] [CrossRef] [Green Version]
- Gill, L.W.; O’Luanaigh, N.; Johnston, P.M.; Misstear, B.D.R.; O’Suilleabhain, C. Nutrient loading on subsoils from on-site wastewater effluent, comparing septic tank and secondary treatment systems. Water Res. 2009, 43, 2739–2749. [Google Scholar] [CrossRef]
- McKinley, J.W.; Siegrist, R.L. Accumulation of organic matter components in soil under conditions imposed by wastewater infiltration. Soil Sci. Soc. Am. J. 2010, 74, 1690–1700. [Google Scholar] [CrossRef]
- Siegrist, R.L.; Boyle, W.C. Waste-water-induced soil clogging development. J. Environ. Eng. 1987, 113, 550–566. [Google Scholar] [CrossRef]
- Knappe, J.; Somlai, C.; Fowler, A.C.; Gill, L.W. The influence of pre-treatment on biomat development in soil treatment units. J. Contam. Hydrol. 2020, 232, 103654. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Frolund, B.; Keiding, K. Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Appl. Microbiol. Biotechnol. 1996, 44, 823–830. [Google Scholar] [CrossRef]
- Wu, J.Q.; Gui, S.X.; Stahl, P.; Zhang, R.D. Experimental study on the reduction of soil hydraulic conductivity by enhanced biomass growth. Soil Sci. 1997, 162, 741–748. [Google Scholar] [CrossRef]
- Siegrist, R.L. Soil clogging during subsurface waste-water infiltration as affected by effluent composition and loading rate. J. Environ. Qual. 1987, 16, 181–187. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Baveye, P.C.; Wander, M. The (bio)chemistry of soil humus and humic substances: Why is the “New View” still considered novel after more than 80 years? Front. Environ. Sci. 2019, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Gill, L.W.; O’Sulleabhain, C.; Misstear, B.D.R.; Johnston, P.J. The treatment performance of different subsoils in Ireland receiving on-site wastewater effluent. J. Environ. Qual. 2007, 36, 1843–1855. [Google Scholar] [CrossRef]
- O’Luanaigh, N.D.; Gill, L.W.; Misstear, B.D.R.; Johnston, P.M. The attenuation of microorganisms in on-site wastewater effluent discharged into highly permeable subsoils. J. Contam. Hydrol. 2012, 142–143, 126–139. [Google Scholar] [CrossRef]
- Bradford, S.A.; Schijven, J.; Harter, T. Microbial transport and fate in the subsurface environment: Introduction to the special section. J. Environ. Qual. 2015, 44, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Flynn, R.M.; Yang, X.Y.; Hofmann, T.; von der Kammer, F. Bovine Serum Albumin Adsorption to Iron-Oxide Coated Sands Can Change Microsphere Deposition Mechanisms. Environ. Sci. Technol. 2012, 46, 2583–2591. [Google Scholar] [CrossRef]
- Harvey, R.W.; Metge, D.W.; Barber, L.B.; Aiken, G.R. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer. Water Res. 2010, 44, 1062–1071. [Google Scholar] [CrossRef]
- Johnson, W.P.; Logan, B.E. Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter. Water Res. 1996, 30, 923–931. [Google Scholar] [CrossRef]
- Schijven, J.F.; Hassanizadeh, S.M. Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Crit. Revs. Environ. Sci. Technol. 2000, 30, 49–127. [Google Scholar] [CrossRef]
- Zhuang, J.; Jin, Y. Virus retention and transport as influenced by different forms of soil organic matter. J. Environ. Qual. 2003, 32, 816–823. [Google Scholar] [CrossRef]
- Harvey, R.W.; George, L.H.; Smith, R.L.; Leblanc, D.R. Transport of microspheres and indigenous bacteria through a sandy aquifer—Results of natural-gradient and forced-gradient tracer experiments. Environ. Sci. Technol. 1989, 23, 51–56. [Google Scholar] [CrossRef]
- Scholl, M.A.; Harvey, R.W. Laboratory investigations on the role of sediment surface and groundwater chemistry in transport of bacteria through a contaminated sandy aquifer. Environ. Sci. Technol. 1992, 26, 1410–1417. [Google Scholar] [CrossRef]
- Baker, A.; Ward, D.; Lieten, S.H.; Periera, R.; Simpson, E.C.; Slater, M. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer. Water Res. 2004, 38, 2934–2938. [Google Scholar] [CrossRef]
- Carstea, E.M.; Bridgeman, J.; Baker, A.; Reynolds, D.M. Fluorescence spectroscopy for wastewater monitoring: A review. Water Res. 2016, 95, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, R.D.; Yen, J.H.; Grizzard, T.J. Characterizing natural organic material from the Occoquan Watershed (Northern Virginia, US) using fluorescence spectroscopy and PARAFAC. Sci. Total Environ. 2006, 361, 249–266. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Murphy, K.R.; Butler, K.D.; Spencer, R.G.M.; Stedmon, C.A.; Boehme, J.R.; Aiken, G.R. Measurement of Dissolved Organic Matter Fluorescence in Aquatic Environments: An Interlaboratory Comparison. Environ. Sci. Technol. 2010, 44, 9405–9412. [Google Scholar] [CrossRef]
- Sierra, M.M.D.; Giovanela, M.; Parlanti, E.; Soriano-Sierra, E.J. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 2005, 58, 715–733. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanog. 2005, 50, 686–697. [Google Scholar] [CrossRef]
- EPA. Code of Practice: Wastewater Treatment and Disposal Systems Serving Single Houses; Environmental Protection Agency: Wexford, Ireland, 2009.
- BSI. BS 5930: 2015—The Code of Practice for Site Investigations; British Standards Institute: Milton Keynes, UK, 2015. [Google Scholar]
- Dubber, D.; Gill, L.W. Suitability of fluorescent whitening compounds (FWCs) as indicators of human faecal contamination from septic tanks in rural catchments. Water Res. 2017, 127, 104–117. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques: PARAFAC. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef] [Green Version]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Mobed, J.J.; Hemmingsen, S.L.; Autry, J.L.; McGown, L.B. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environ. Sci. Technol. 1996, 30, 3061–3065. [Google Scholar] [CrossRef]
- Chen, J.; LeBoef, E.J.; Dai, S.; Gu, B.H. Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 2003, 50, 639–647. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S.; Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Determann, S.; Lobbes, J.M.; Reuter, R.; Rullkotter, J. Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Mar. Chem. 1998, 62, 137–156. [Google Scholar] [CrossRef]
- Lakowicz, J.R. (Ed.) Protein Fluorescence. In Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Yao, Y.; Li, Y.Z.; Guo, X.J.; Huang, T.; Gao, P.P.; Zhang, Y.P.; Yuan, F. Changes and characteristics of dissolved organic matter in a constructed wetland system using fluorescence spectroscopy. Environ. Sci. Pollut. Res. 2016, 23, 12237–12245. [Google Scholar] [CrossRef] [PubMed]
- Riopel, R.; Siemann, S.; Caron, F. Microbial changes in the fluorescence character of natural organic matter from a wastewater source. J. Water Resour. Prot. 2016, 8, 873–883. [Google Scholar] [CrossRef] [Green Version]
- Riopel, R.; Caron, F.; Siemann, S. Fluorescence characterization of natural organic matter at a northern Ontario wastewater treatment plant. Water Air Soil Pollut. 2014, 225, 1–17. [Google Scholar] [CrossRef]
- Poiger, T.; Field, J.A.; Field, T.M.; Siegrist, H.; Giger, W. Behavior of fluorescent whitening agents during sewage treatment. Water Res. 1998, 32, 1939–1947. [Google Scholar] [CrossRef]
- Hartel, P.G.; Hagedorn, C.; McDonald, J.L.; Fisher, J.A.; Saluta, M.A.; Dickerson, J.W.; Gentit, L.C.; Smith, S.L.; Mantriprayada, N.S.; Ritter, K.J.; et al. Exposing water samples to ultraviolet light improves fluorometry for detecting human fecal contamination. Water Res. 2007, 41, 3629–3642. [Google Scholar] [CrossRef]
- Stoll, J.M.A.; Ulrich, M.M.; Giger, W. Dynamic behavior of fluorescent whitening agents in Greifensee: Field measurements combined with mathematical modeling of sedimentation and photolysis. Environ. Sci. Technol. 1998, 32, 1875–1881. [Google Scholar] [CrossRef]
- Fennell, C.; Gill, L.; O’Connell, D.; Dubber, D.; Behan, P.; Danaher, M.; Misstear, B. The impact of domestic wastewater treatment systems on private water wells: An assessment of contamination fingerprinting techniques. Environ. Pollut. 2021, 268, 115687. [Google Scholar] [CrossRef]
- Fox, B.G.; Thorn, R.M.S.; Anesio, A.M.; Reynolds, D.M. The in situ bacterial production of fluorescent organic matter; an investigation at a species level. Water Res. 2017, 125, 350–359. [Google Scholar] [CrossRef]
- Parlanti, E.; Wörz, K.; Geoffroy, L.; Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem. 2000, 31, 1765–1781. [Google Scholar] [CrossRef]
- Cumberland, S.; Bridgeman, J.; Baker, A.; Sterling, M.; Ward, D. Fluorescence spectroscopy as a tool for determining microbial quality in potable water applications. Environ. Technol. 2012, 33, 687–693. [Google Scholar] [CrossRef]
- Sorensen, J.P.R.; Lapworth, D.J.; Marchant, B.P.; Nkhuwa, D.C.W.; Pedley, S.; Stuart, M.E.; Bell, R.A.; Chirwa, M.; Kabika, J.; Liemisa, M.; et al. In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies. Water Res. 2015, 81, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Malcolm, R.L. The uniqueness of humic substances in each of soil, stream and marine environments. Anal. Chim. Acta 1990, 232, 19–30. [Google Scholar] [CrossRef]
- Senesi, N.; Miano, T.M.; Provenzano, M.R.; Brunetti, G. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci. 1991, 152, 259–271. [Google Scholar] [CrossRef]
- Murphy, E.M.; Zachara, J.M.; Smith, S.C. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ. Sci. Technol. 1990, 24, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
Fluorescent Component | λex | λem | Description and Source Assignment of Fluorophores |
---|---|---|---|
C1 | (250 nm) 335–350 nm | 422 nm | High MW a, high aromaticity, chemically stable; from both, microbial and terrestrially derived DOM |
C2 | 350 nm | 425 nm | Fluorescent whitening compounds; here specifically DSBP |
C3 | (255 nm) 390 nm | 484 nm | Very high MW a, condensed, aromatic and chemically very stable; derived from soil |
C4 | (240 nm) 310 nm | 385 nm | Lower MW a and aromaticity; predominantly from microbial activities |
C5 | 275 nm | 343 nm | Protein-like; presence of amino acids tyrosine and tryptophan; intact and denatured proteins |
C6 | 295 nm | 343 nm | Protein-like; attributed to tryptophan; intact proteins from bacterial activity |
C1 | C2 | C3 | C4 | C5 | C6 | HI a | FI b | DOC [mg/L] | |
---|---|---|---|---|---|---|---|---|---|
PE | 4.1 ± 3.1 | 32.9 ± 19.0 | 7.2 ± 0.5 | 8.9 ± 2.8 | 43.3 ± 15.2 | 3.5 ± 3.5 | 0.91 ± 0.4 | 2.06 ± 0.4 | 62.97 ± 35.7 |
PE trench | 22.0 ± 8.1 | 13.4 ± 4.4 | 14.3 ± 2.6 | 20.4 ± 2.2 | 17.0 ± 3.5 | 12.8 ± 3.8 | 3.05 ± 1.2 | 1.58 ± 0.06 | 10.47 ± 3.6 |
SE | 2.2 ± 1.9 | 52.4 ± 1.9 | 9.1 ± 1.9 | 13.8 ± 2.1 | 14.0 ± 1.6 | 8.4 ± 2.7 | 2.45 ± 0.6 | 2.22 ± 0.03 | 17.45 ± 2.5 |
SE trench | 25.7 ± 9.9 | 13.5 ± 10.1 | 13.9 ± 4.3 | 19.8 ± 1.8 | 13.9 ± 3.4 | 13.2 ± 7.5 | 3.77 ± 1.2 | 1.63 ± 0.1 | 5.87 ± 3.1 |
Outside plume c | 48.2 | 7.5 | 17.9 | 20.1 | 4.4 | 1.8 | 11.56 | 1.58 | 3.57 |
SR-NOM d | 55.5 | 6.2 | 26.6 | 7.7 | 5.7 | −1.7 | 22.32 | 1.15 | 6.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubber, D.; Knappe, J.; Gill, L.W. Characterisation of Organic Matter and Its Transformation Processes in On-Site Wastewater Effluent Percolating through Soil Using Fluorescence Spectroscopic Methods and Parallel Factor Analysis (PARAFAC). Water 2021, 13, 2627. https://doi.org/10.3390/w13192627
Dubber D, Knappe J, Gill LW. Characterisation of Organic Matter and Its Transformation Processes in On-Site Wastewater Effluent Percolating through Soil Using Fluorescence Spectroscopic Methods and Parallel Factor Analysis (PARAFAC). Water. 2021; 13(19):2627. https://doi.org/10.3390/w13192627
Chicago/Turabian StyleDubber, Donata, Jan Knappe, and Laurence W. Gill. 2021. "Characterisation of Organic Matter and Its Transformation Processes in On-Site Wastewater Effluent Percolating through Soil Using Fluorescence Spectroscopic Methods and Parallel Factor Analysis (PARAFAC)" Water 13, no. 19: 2627. https://doi.org/10.3390/w13192627
APA StyleDubber, D., Knappe, J., & Gill, L. W. (2021). Characterisation of Organic Matter and Its Transformation Processes in On-Site Wastewater Effluent Percolating through Soil Using Fluorescence Spectroscopic Methods and Parallel Factor Analysis (PARAFAC). Water, 13(19), 2627. https://doi.org/10.3390/w13192627