Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility Mapping
Abstract
:1. Introduction
2. Description of the Study Area
3. Materials and Methods
- (i)
- Landslide inventory map (LIM) construction-Landslide locations were firstly identified by using Google Earth images to produce a LIM. Subsequently, a detailed field survey was conducted on November 2019, and historical records were acquired for verifying the location of landslides.
- (ii)
- After a literature review, and based on the geoenvironmental condition of the study area, landslide conditioning factors (LCFs) were selected, and thematic layers of LCFs were prepared on a geographical information system (GIS) platform.
- (iii)
- After selecting the LCFs based on previous literature and the geoenvironmental condition, a factor selection process was performed by using multicollinearity assessment and chi-square attribute evaluation (CSAE) techniques to choose appropriate LCFs for landslide susceptibility modelling. A total of 21 LCFs were chosen as appropriate factors.
- (iv)
- LSMs were then generated by using DL (CNN) and hybrid tree-based ML approach (ANN, ADtree, CART, FTree and LMT) models, and their results were compared.
- (v)
- After modelling the landslide susceptibility, ridge regression (RR) was applied to verify the importance of the selected LCFs in producing an LSM.
- (vi)
- The accuracy of each model was assessed by applying the ROC curve and 21 statistical measures. This process was performed to compare the results of the models and select the best amongst them.
3.1. Data Used
3.2. Preparation of LIM
3.3. Preparation of LCFs
3.3.1. Topographical Factors
3.3.2. Other Environmental Factors
3.4. Multicollinearity Assessment
3.5. CSAE
3.6. Evaluation of Factor Importance by Using RR
3.7. DL and Tree-Based ML Models
3.7.1. CNN
3.7.2. ANN
- (i)
- The inputs are extended ahead through the hidden layers to estimate the difference and to generate the output values. The output values are compared with the pre values.
- (ii)
- The connection weights are adjusted to optimise the best results for the least variation.
3.7.3. ADTree
3.7.4. CART
3.7.5. FTree
3.7.6. LMT
3.8. Validation Methods
4. Results
4.1. Analysis of Multicollinearity
4.2. Results of CSAE
4.3. LSMs
4.4. Importance Analysis of LCFs by RR
4.5. Validation and Accuracy Assessment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Wang, C.; Liu, J.; Zhang, L. Susceptibility assessment of landslides triggered by earthquakes in the Western Sichuan Plateau. CATENA 2018, 175, 63–76. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Pathways and challenges of the application of artificial intelligence to geohazards modelling. Gondwana Res. 2020. [Google Scholar] [CrossRef]
- Bordoni, M.; Meisina, C.; Valentino, R.; Lu, N.; Bittelli, M.; Chersich, S. Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis. Eng. Geol. 2015, 193, 19–37. [Google Scholar] [CrossRef]
- Corominas, J.; Van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Eeckhaut, M.V.D.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Int. Assoc. Eng. Geol. 2013, 73, 209–263. [Google Scholar] [CrossRef]
- Depicker, A.; Jacobs, L.; Delvaux, D.; Havenith, H.-B.; Mateso, J.-C.M.; Govers, G.; Dewitte, O. The added value of a regional landslide susceptibility assessment: The western branch of the East African Rift. Geomorphology 2019, 353, 106886. [Google Scholar] [CrossRef]
- Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci. 2012, 68, 1443–1464. [Google Scholar] [CrossRef]
- DU, G.; Zhang, Y.-S.; Iqbal, J.; Yang, Z.-H.; Yao, X. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. J. Mt. Sci. 2017, 14, 249–268. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: A case study of Duzkoy district. Nat. Hazards 2014, 76, 471–496. [Google Scholar] [CrossRef]
- Wang, L.-J.; Guo, M.; Sawada, K.; Lin, J.; Zhang, J. Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. CATENA 2015, 135, 271–282. [Google Scholar] [CrossRef]
- Poli, S.; Sterlacchini, S. Landslide Representation Strategies in Susceptibility Studies using Weights-of-Evidence Modeling Technique. Nat. Resour. Res. 2007, 16, 121–134. [Google Scholar] [CrossRef]
- Armas, I. Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania. Nat. Hazards 2011, 60, 937–950. [Google Scholar] [CrossRef]
- Meena, S.R.; Ghorbanzadeh, O.; Blaschke, T. A Comparative Study of Statistics-Based Landslide Susceptibility Models: A Case Study of the Region Affected by the Gorkha Earthquake in Nepal. ISPRS Int. J. Geo-Inf. 2019, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Goetz, J.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Schmidt, J.; Marques, M.R.; Botti, S.; Marques, M.A. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Kardani, N.; Bardhan, A.; Samui, P.; Nazem, M.; Zhou, A.; Armaghani, D.J. A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil. Eng. Comput. 2021, 1–20. [Google Scholar] [CrossRef]
- Kardani, N.; Zhou, A.; Shen, S.-L.; Nazem, M. Estimating unconfined compressive strength of unsaturated cemented soils using alternative evolutionary approaches. Transp. Geotech. 2021, 29, 100591. [Google Scholar] [CrossRef]
- Kardani, N.; Zhou, A.; Nazem, M.; Shen, S.-L. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J. Rock Mech. Geotech. Eng. 2020, 13, 188–201. [Google Scholar] [CrossRef]
- Asteris, P.G.; Mamou, A.; Hajihassani, M.; Hasanipanah, M.; Koopialipoor, M.; Le, T.-T.; Kardani, N.; Armaghani, D.J. Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks. Transp. Geotech. 2021, 29, 100588. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- Caniani, D.; Pascale, S.; Sdao, F.; Sole, A. Neural networks and landslide susceptibility: A case study of the urban area of Potenza. Nat. Hazards 2007, 45, 55–72. [Google Scholar] [CrossRef]
- Andrieu, C.; De Freitas, N.; Doucet, A.; Jordan, M.I. An Introduction to MCMC for Machine Learning. Mach. Learn. 2003, 50, 5–43. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep learning and process understanding for data-driven Earth system science. Nat. Cell Biol. 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Deng, L.; Yu, D. Deep learning: Methods and applications found. Trends Signal Process. 2014, 7, 197–387. [Google Scholar] [CrossRef] [Green Version]
- Bui, D.T.; Tsangaratos, P.; Nguyen, V.-T.; Van Liem, N.; Trinh, P.T. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. CATENA 2020, 188, 104426. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput. Geosci. 2020, 139, 104470. [Google Scholar] [CrossRef]
- Taherdangkoo, R.; Liu, Q.; Xing, Y.; Yang, H.; Cao, V.; Sauter, M.; Butscher, C. Predicting methane solubility in water and seawater by machine learning algorithms: Application to methane transport modeling. J. Contam. Hydrol. 2021, 242, 103844. [Google Scholar] [CrossRef] [PubMed]
- Gokgoz, E.; Subasi, A. Comparison of decision tree algorithms for EMG signal classification using DWT. Biomed. Signal Process. Control. 2015, 18, 138–144. [Google Scholar] [CrossRef]
- Park, S.; Hamm, S.Y.; Kim, J. Performance evaluation of the GIS-based data-mining techniques decision tree, random forest, and rotation forest for landslide susceptibility modeling. Sustainability 2020, 11, 5659. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Roy, J.; Pradhan, B.; Hembram, T.K. Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at East Sikkim Himalayan, India. Adv. Space Res. 2021, 68, 2819–2840. [Google Scholar] [CrossRef]
- Yilmaz, C.; Topal, T.; Süzen, M.L. GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environ. Earth Sci. 2011, 65, 2161–2178. [Google Scholar] [CrossRef]
- Saha, A.; Saha, S. Application of statistical probabilistic methods in landslide susceptibility assessment in Kurseong and its surrounding area of Darjeeling Himalayan, India: RS-GIS approach. Environ. Dev. Sustain. 2020, 23, 4453–4483. [Google Scholar] [CrossRef]
- Van Dao, D.; Jaafari, A.; Bayat, M.; Mafi-Gholami, D.; Qi, C.; Moayedi, H.; Van Phong, T.; Ly, H.B.; Le, T.T.; Trinh, P.T.; et al. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. CATENA 2020, 1, 104451. [Google Scholar]
- Nhu, V.-H.; Hoang, N.-D.; Nguyen, H.; Ngo, P.T.T.; Bui, T.T.; Hoa, P.V.; Samui, P.; Bui, D.T. Effectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area. CATENA 2020, 188, 104458. [Google Scholar] [CrossRef]
- Tian, H.; Nan, H.; Yang, Z. Select landslide susceptibility main affecting factors by multi-objective optimization algorithm. In Proceedings of the 2010 6th International Conference on Natural Computation, Yantai, China, 10–12 August 2010; Volume 4, pp. 1830–1833. [Google Scholar] [CrossRef]
- Alkhasawneh, M.; Ngah, U.K.; Tay, L.T.; Isa, N.A.M.; Al-Batah, M.S. Determination of Important Topographic Factors for Landslide Mapping Analysis Using MLP Network. Sci. World J. 2013, 2013, 415023. [Google Scholar] [CrossRef]
- Wood, J. Geomorphometry in landserf. Dev. Soil Sci. 2009, 33, 333–349. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C. Terrain Analysis: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Berry, J.K. Use surface area for realistic calculations. Geo. World 2002, 15, 20–21. [Google Scholar]
- Riley, S.J.; De Gloria, S.D.; Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Chen, C.-W.; Saito, H.; Oguchi, T. Rainfall intensity–duration conditions for mass movements in Taiwan. Prog. Earth Planet. Sci. 2015, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Sohrabi, M.; Kalantari, Z. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J. Mt. Sci. 2019, 16, 595–618. [Google Scholar] [CrossRef]
- Cama, M.; Lombardo, L.; Conoscenti, C.; Rotigliano, E. Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy). Geomorphology 2017, 288, 52–65. [Google Scholar] [CrossRef]
- Vafaie, H.; Imam, I.F. Feature selection methods: Genetic algorithms vs. greedy-like search. Proc. Int. Conf. Fuzzy Intell. Control Syst. 1994, 51, 28. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Applications to nonorthogonal problems. Technometrics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Goncharsky, A.V.; Stepanov, V.V.; Yagola, A.G. Regularization methods. Numer. Methods Solut. Ill-Posed Probl. 1995, 328, 7–63. [Google Scholar] [CrossRef]
- Valueva, M.; Nagornov, N.; Lyakhov, P.; Valuev, G.; Chervyakov, N. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math. Comput. Simul. 2020, 177, 232–243. [Google Scholar] [CrossRef]
- Gupta, T.K.; Raza, K. Optimization of ANN architecture: A review on nature-inspired techniques. Machine learning in bio-signal analysis and diagnostic imaging. In Machine Learning in Bio-Signal Analysis and Diagnostic Imaging; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 159–182. [Google Scholar]
- Ding, A.; Zhang, Q.; Zhou, X.; Dai, B. Automatic recognition of landslide based on CNN and texture change detection. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 444–448. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the ICML, Haifa, Israel, 21–24 June 2010; Available online: https://openreview.net/forum?id=rkb15iZdZB (accessed on 20 December 2020).
- Haykin, S. Neural Networks and Learning Machines.[sl] Pearson Upper Saddle River; Publisher-Pearson: Upper Saddle River, NJ, USA, 2009; Volume 3. [Google Scholar]
- Gardner, M.; Dorling, S. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Mosallanezhad, M.; Rashid, A.S.A.; Pradhan, B. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng. Comput. 2018, 35, 967–984. [Google Scholar] [CrossRef]
- Freund, Y.; Mason, L. The alternating decision tree learning algorithm. ICML 1999, 99, 124–133. [Google Scholar]
- Sok, H.K.; Ooi, M.; Kuang, Y.C.; Demidenko, S. Multivariate alternating decision trees. Pattern Recognit. 2016, 50, 195–209. [Google Scholar] [CrossRef]
- Nefeslioglu, H.A.; Sezer, E.A.; Gokceoglu, C.; Bozkir, A.S.; Duman, T.Y. Assessment of Landslide Susceptibility by Decision Trees in the Metropolitan Area of Istanbul, Turkey. Math. Probl. Eng. 2010, 2010, 901095. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth International Group: Belmont, CA, USA, 1984. [Google Scholar]
- Gama, J. Functional trees. Mach. Learn. 2004, 55, 219–250. [Google Scholar] [CrossRef]
- Landwehr, N.; Hall, M.; Frank, E. Logistic model trees. Mach. Learn. 2005, 59, 161–205. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-J.; Guo, M.; Sawada, K.; Lin, J.; Zhang, J. A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosci. J. 2015, 20, 117–136. [Google Scholar] [CrossRef]
- Akgün, A.; Türk, N. Mapping erosion susceptibility by a multivariate statistical method: A case study from the Ayvalık region, NW Turkey. Comput. Geosci. 2010, 37, 1515–1524. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons. Inc.: New York, NY, USA, 2001. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2005, 27, 861–874. [Google Scholar] [CrossRef]
- Altaf, S.; Meraj, G.; Romshoo, S.A. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environ. Monit. Assess. 2014, 186, 8391–8412. [Google Scholar] [CrossRef]
- Rahmati, O.; Kornejady, A.; Samadi, M.; Deo, R.C.; Conoscenti, C.; Lombardo, L.; Dayal, K.; Taghizadeh-Mehrjardi, R.; Pourghasemi, H.R.; Kumar, S.; et al. PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. Sci. Total Environ. 2019, 664, 296–311. [Google Scholar] [CrossRef]
- Fukuda, S.; De Baets, B.; Waegeman, W.; Verwaeren, J.; Mouton, A.M. Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models. Environ. Model. Softw. 2013, 47, 1–6. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Roy, J.; Chen, W.; Blaschke, T.; Bui, D.T. Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote. Sens. 2020, 12, 475. [Google Scholar] [CrossRef] [Green Version]
- Roy, J.; Saha, S.; Arabameri, A.; Blaschke, T.; Bui, D.T. A Novel Ensemble Approach for Landslide Susceptibility Mapping (LSM) in Darjeeling and Kalimpong Districts, West Bengal, India. Remote. Sens. 2019, 11, 2866. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef] [PubMed]
- Moosavi, V.; Talebi, A.; Shirmohammadi, B. Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology 2014, 204, 646–656. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote. Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Prakash, I.; Singh, S.; Shirzadi, A.; Shahabi, H.; Tran, T.-T.; Bui, D.T. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. CATENA 2018, 175, 203–218. [Google Scholar] [CrossRef]
- Sahin, E.K.; Ipbuker, C.; Kavzoglu, T. Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping. Geocarto Int. 2016, 32, 956–977. [Google Scholar] [CrossRef]
- Roy, J.; Saha, S. Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal, India. Geoenviron. Disasters 2019, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Mahato, S.; Pal, S. Groundwater Potential Mapping in a Rural River Basin by Union (OR) and Intersection (AND) of Four Multi-criteria Decision-Making Models. Nat. Resour. Res. 2018, 28, 523–545. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Bui, D.T.; Pradhan, B.; Acharya, T.D.; Pham, B.T.; Zhu, A.-X.; Chen, W.; Bin Ahmad, B. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). CATENA 2018, 163, 399–413. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Jia, H.; Zhang, J. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. CATENA 2020, 195, 104851. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pouyan, S.; Farajzadeh, Z.; Sadhasivam, N.; Heidari, B.; Babaei, S.; Tiefenbacher, J.P. Assessment of the outbreak risk, mapping and infection behavior of COVID-19: Application of the autoregressive integrated-moving average (ARIMA) and polynomial models. PLoS ONE 2020, 15, e0236238. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.; Saha, S. Integration of artificial intelligence with meta classifiers for the gully erosion susceptibility assessment in Hinglo river basin, Eastern India. Adv. Space Res. 2020, 67, 316–333. [Google Scholar] [CrossRef]
- Hosseinalizadeh, M.; Kariminejad, N.; Chen, W.; Pourghasemi, H.R.; Alinejad, M.; Behbahani, A.M.; Tiefenbacher, J.P. Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree). Geomorphology 2019, 329, 184–193. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Prakash, I.; Dholakia, M. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Saha, S.; Saha, A.; Hembram, T.K.; Pradhan, B.; Alamri, A.M. Evaluating the performance of individual and novel ensemble of machine learning and statistical models for landslide susceptibility assessment at Rudraprayag District of Garhwal Himalaya. Appl. Sci. 2020, 10, 3772. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H.; Ugawa, N. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 2004, 1, 73–81. [Google Scholar] [CrossRef]
Sl.No | Geo Unit | Description | Formation | Age | Area (km2) | % of Area |
---|---|---|---|---|---|---|
1 | Ptdr3 | Verlegated cherty phyllite | Reyong Formation, Daling Group | Proterozoic | 0.81 | 0.08 |
2 | Pt2I | Granite gneiss (mylonitic) | Lingtse Gneiss | Meso-Proerozoic | 78.08 | 8.10 |
3 | Ptdb | Dolostone, orthoquartzite, purple phyllite/slat, chert | Boxa Formation, Daling Group | Proterozoic | 2.08 | 0.22 |
4 | Ptdg1 | Interbanded chlorite-sericite schist/phyllite and quartzite | Gorubathan Formation, Daling Group | Proterozoic | 10.02 | 1.04 |
5 | Ptdg6 | Mica schist with garnet with staurollite | Gorubathan Formation, Daling Group | Proterozoic | 2.28 | 0.24 |
6 | Ptdg4 | Biotite phyllite/mica schist | Gorubathan Formation, Daling Group | Proterozoic | 3.95 | 0.41 |
7 | Pollymetallic base metal | 3.10 | 0.32 | |||
8 | Ptcc3 | Calc-granullite (locally gneissic) with intercalculation of quartzite | Chungthang Formation, Central Crystalline Gneissic Complex (CCGC) | Proterozoic | 1.51 | 0.16 |
9 | Ptcc4 | Graphitic schist | Chungthang Formation, Central Crystalline Gneissic Complex (CCGC) | Proterozoic | 0.80 | 0.08 |
10 | Ptcc1,3,4 | 1. Quartzite, 3. Calc-granullite (locally gneissic) with intercalculation of quartzite, 4. Graphitic schist | Chungthang Formation, Central Crystalline Gneissic Complex (CCGC) | Proterozoic | 2.20 | 0.23 |
11 | Ptck3 | Sillimanite granite gneiss | Kanchenjunga gneiss, Central Crystalline Gneissic Complex (CCGC) | Proterozoic | 1.09 | 0.11 |
12 | Glacier | 25.75 | 2.67 | |||
13 | Ptcc2 | Garnet kyanite sillimaite biotite schist/ gametiferous mica schist | Chungthang Formation, Central Crystalline Gneissic Complex (CCGC) | Proterozoic | 1.10 | 0.11 |
14 | Ptcc2,3 | 2. Garnet kyanite sillimaite biotite schist/ gametiferous mica schist, 3.3. Calc-granullite (locally gneissic) with intercalculation of quartzite, | Chungthang Formation, Central Crystalline Gneissic Complex (CCGC) | Proterozoic | 2.02 | 0.21 |
15 | Ptcc1,3 | 1. Quartzite, 3. Calc-granullite (locally gneissic) with intercalculation of quartzite, | Chungthang Formation, Central Crystalline Gneissic Complex (CCGC) | Proterozoic | 1.47 | 0.15 |
16 | Ptcc1 | 1. Quartzite | Chungthang Formation, Central Crystalline Gneissic Complex (CCGC) | Proterozoic | 1.49 | 0.15 |
17 | Ptcc1,2,3 | 1. Quartzite, 2. Garnet kyanite sillimaite biotite schist/gametiferous mica schist, 3. Calc-granullite (locally gneissic) with intercalculation of quartzite, | Chungthang Formation, Central Crystalline Gneissic Complex (CCGC) | Proterozoic | 29.81 | 3.09 |
18 | Pta | amphibole schist/amphibolite | Basic Intrusive | Proterozoic | 2.27 | 0.24 |
19 | Ptdg1-7 | 1. Interbanded chlorite-sericite schist/phyllite and quartzite, 2. Metagreywacke (quartzo-feldspathic greywacke),3. Pyritiferious black slate, 4. Biotite phyllite/schist, 5. Biotite quartzite, 6. Mica schist with garnet with/without staurolite, 7. Chlorite quartzite | Gorubathan Formation, Daling Group | Proterozoic | 298.90 | 31.01 |
20 | Ptck1 | banded/streaky migmatite, augen bearing (garnet) biotite gneiss with/ without kynite silimanite with palaeosomes or staurolite, kynite, mica schist | Kanchenjunga gneiss, Central Crystalline Gneissic Complex (CCGC) | Proterozoic | 495.27 | 51.38 |
Code | Soil Texture | Soil Types | Area (km2) | % of Area |
---|---|---|---|---|
1 | Coarse loamy humic pachic dystrudepts associated with fine loamy type udorthents | Inceptisols | 202.42 | 21.00 |
2 | Loamy skeletal lithic udorthents associated with rocks | Entisols | 44.05 | 4.57 |
3 | Loamy skeletal entic hapludolls associated with loamy skeletal type udorthents | Mollisols | 11.69 | 1.21 |
4 | Fine loamy typic paleudolls associated with fine loamy typic hapludools | Mollisols | 27.77 | 2.88 |
5 | Coarse loamy typic hapludols associated with coarse loamy entic hapludols | Mollisols | 57.14 | 5.93 |
6 | Fine skeletal cumulic hapludolls associated with coarse loamy typic Udorthents | Mollisols | 49.91 | 5.18 |
7 | Loamy skeletal typic udorthents associated with coarse loamy lithic dystrudepts | Entisols | 10.75 | 1.12 |
8 | Fine loamy typic argludolls associated with fine loamy cumic hapludolls | Mollisols | 30.25 | 3.14 |
9 | Fine loamy fluventic eutrodepts associated with loamy lithic haploudolls | Inceptisols | 23.34 | 2.42 |
10 | Coarse loamy humic dystrudepts associated with coarse loamy typic udorthents | Inceptisols | 506.68 | 52.56 |
Measures | Formula | References |
---|---|---|
TPR or sensitivity | [66] | |
FPR or fall-out or 1-specificity | [66] | |
TNR or specificity | [67] | |
Miss rate | [70] | |
Accuracy | [67] | |
Misclassification rate | [70] | |
PPV or precision | [71] | |
False discovery rate (FDR) | [71] | |
Negative predictive value (NPV) | [71] | |
False omission rate (FOR) | [71] | |
F-score | [71] | |
Matthews correlation coefficient (MCC) | [71] | |
Bookmaker informedness (BM) | [71] | |
Markedness (MK) | [71] | |
Threat score (TS) | [71] | |
Equitable threat score | [71] | |
True skill statistics (TSS) | [71] | |
Heidke’s skill score | [71] | |
Odd ratio skill score (Yule’s Q) | [71] | |
Cohen’s kappa | [71] |
Factors | Collinearity Statistics | |
---|---|---|
Tolerance | VIF | |
Elevation | 0.54 | 1.85 |
Slope | 0.31 | 4.57 |
Profile curvature | 0.21 | 4.74 |
Plan curvature | 0.40 | 2.48 |
Convergence index | 0.26 | 3.73 |
Cross sectional curvature | 0.21 | 4.76 |
General curvature | 0.23 | 4.35 |
Longitudinal curvature | 0.23 | 2.19 |
Surface area | 0.31 | 3.28 |
Tangential curvature | 0.22 | 4.55 |
TRI | 0.92 | 1.09 |
TPI | 0.31 | 3.19 |
TWI | 0.86 | 1.17 |
Valley depth (VD) | 0.34 | 2.97 |
Aspect | 0.81 | 1.23 |
Relative slope position (RSP) | 0.59 | 1.69 |
Rainfall | 0.84 | 1.19 |
NDVI | 0.93 | 1.07 |
LULC | 0.91 | 1.10 |
Soil map | 0.83 | 1.17 |
Geology | 0.71 | 1.90 |
Using Training Dataset | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Criteria | Results | Rank | ||||||||||
CNN | ANN | ADTree | CART | FTree | LMT | CNN | ANN | ADTree | CART | FTree | LMT | |
TPR | 0.9 | 0.75 | 0.71 | 0.84 | 0.76 | 0.79 | 1 | 5 | 6 | 2 | 4 | 3 |
FPR | 0.07 | 0.13 | 0.23 | 0.14 | 0.15 | 0.12 | 1 | 3 | 6 | 4 | 5 | 2 |
efficiency | 0.92 | 0.8 | 0.73 | 0.85 | 0.8 | 0.83 | 1 | 4 | 5 | 2 | 4 | 3 |
TSS | 0.83 | 0.63 | 0.48 | 0.7 | 0.61 | 0.68 | 1 | 4 | 6 | 2 | 5 | 3 |
TNR | 0.93 | 0.88 | 0.77 | 0.86 | 0.85 | 0.88 | 1 | 2 | 5 | 3 | 4 | 2 |
FNR | 0.1 | 0.25 | 0.29 | 0.16 | 0.24 | 0.21 | 1 | 5 | 6 | 2 | 4 | 3 |
Misclassification rate | 0.08 | 0.2 | 0.27 | 0.15 | 0.2 | 0.17 | 1 | 4 | 5 | 2 | 4 | 3 |
PPV | 0.93 | 0.9 | 0.8 | 0.87 | 0.87 | 0.9 | 1 | 2 | 4 | 3 | 3 | 2 |
FDR | 0.07 | 0.1 | 0.2 | 0.13 | 0.13 | 0.1 | 1 | 2 | 4 | 3 | 3 | 2 |
NPV | 0.9 | 0.7 | 0.67 | 0.83 | 0.73 | 0.77 | 1 | 5 | 6 | 2 | 4 | 3 |
F-score | 0.92 | 0.82 | 0.75 | 0.85 | 0.81 | 0.84 | 1 | 4 | 6 | 2 | 5 | 3 |
Matthews correlation coefficient (MCC) | 0.83 | 0.61 | 0.47 | 0.7 | 0.61 | 0.67 | 1 | 4 | 5 | 2 | 4 | 3 |
BM | 0.83 | 0.63 | 0.48 | 0.7 | 0.61 | 0.68 | 1 | 4 | 6 | 2 | 5 | 3 |
MK | 0.83 | 0.6 | 0.47 | 0.7 | 0.6 | 0.67 | 1 | 4 | 5 | 2 | 4 | 3 |
Threat score (TS) | 0.85 | 0.69 | 0.6 | 0.74 | 0.68 | 0.73 | 1 | 4 | 6 | 2 | 5 | 3 |
Odd ratio skill score | 0.98 | 0.91 | 0.78 | 0.94 | 0.89 | 0.93 | 1 | 4 | 6 | 2 | 5 | 3 |
Equitable threat score | 0.71 | 0.44 | 0.3 | 0.54 | 0.43 | 0.5 | 1 | 5 | 6 | 2 | 4 | 3 |
Heidke’s skill score | 0.21 | 0.18 | 0.16 | 0.19 | 0.18 | 0.19 | 1 | 3 | 4 | 2 | 3 | 2 |
Cohen’s Kappa | 0.83 | 0.6 | 0.47 | 0.7 | 0.61 | 0.67 | 1 | 5 | 6 | 2 | 4 | 3 |
AUC | 0.918 | 0.843 | 0.745 | 0.91 | 0.9 | 0.905 | 1 | 5 | 6 | 2 | 4 | 3 |
Rank total | 20 | 78 | 109 | 45 | 83 | 55 | ||||||
CF | 1.00 | 3.93 | 5.45 | 2.25 | 4.15 | 2.75 | ||||||
Priority rank | 1 | 4 | 6 | 2 | 5 | 3 | ||||||
Using Validation Dataset | ||||||||||||
TPR | 0.86 | 0.71 | 0.64 | 0.79 | 0.71 | 0.79 | 1 | 3 | 5 | 2 | 4 | 2 |
FPR | 0.08 | 0.25 | 0.33 | 0.17 | 0.31 | 0.17 | 1 | 3 | 5 | 2 | 4 | 2 |
efficiency | 0.38 | 0.32 | 0.28 | 0.35 | 0.32 | 0.35 | 1 | 3 | 4 | 2 | 3 | 2 |
TSS | 0.77 | 0.46 | 0.31 | 0.62 | 0.41 | 0.62 | 1 | 3 | 5 | 2 | 4 | 2 |
TNR | 0.92 | 0.75 | 0.67 | 0.83 | 0.69 | 0.83 | 1 | 3 | 5 | 2 | 4 | 2 |
FNR | 0.14 | 0.29 | 0.36 | 0.21 | 0.29 | 0.21 | 1 | 3 | 4 | 2 | 3 | 2 |
Misclassification rate | 0.12 | 0.27 | 0.35 | 0.19 | 0.3 | 0.19 | 1 | 3 | 5 | 2 | 4 | 2 |
PPV | 0.92 | 0.77 | 0.69 | 0.85 | 0.71 | 0.85 | 1 | 3 | 5 | 2 | 4 | 2 |
FDR | 0.08 | 0.23 | 0.31 | 0.15 | 0.29 | 0.15 | 1 | 3 | 5 | 2 | 4 | 2 |
NPV | 0.85 | 0.69 | 0.62 | 0.77 | 0.69 | 0.77 | 1 | 3 | 4 | 2 | 3 | 2 |
F-score | 0.89 | 0.74 | 0.67 | 0.81 | 0.71 | 0.81 | 1 | 3 | 5 | 2 | 4 | 2 |
MCC | 0.77 | 0.46 | 0.31 | 0.62 | 0.41 | 0.62 | 1 | 3 | 5 | 2 | 4 | 2 |
BM | 0.77 | 0.46 | 0.31 | 0.62 | 0.41 | 0.62 | 1 | 3 | 5 | 2 | 4 | 2 |
MK | 0.77 | 0.46 | 0.31 | 0.62 | 0.41 | 0.62 | 1 | 3 | 5 | 2 | 4 | 2 |
Threat score (TS) | 0.8 | 0.59 | 0.5 | 0.69 | 0.56 | 0.69 | 1 | 3 | 5 | 2 | 4 | 2 |
Odd ratio skill score | 0.97 | 0.76 | 0.57 | 0.9 | 0.7 | 0.9 | 1 | 3 | 5 | 2 | 4 | 2 |
Equitable threat score | 0.63 | 0.3 | 0.18 | 0.44 | 0.26 | 0.44 | 1 | 3 | 5 | 2 | 4 | 2 |
Heidke’s skill score | 0.09 | 0.08 | 0.07 | 0.08 | 0.07 | 0.08 | 1 | 2 | 3 | 2 | 3 | 2 |
Cohen’s Kappa | 0.77 | 0.46 | 0.31 | 0.62 | 0.41 | 0.62 | 1 | 3 | 5 | 2 | 4 | 2 |
AUC | 0.933 | 0.889 | 0.785 | 0.925 | 0.91 | 0.92 | 1 | 5 | 6 | 2 | 4 | 3 |
Rank total | 20 | 61 | 96 | 40 | 76 | 41 | ||||||
CF | 1.00 | 3.05 | 4.80 | 2.00 | 3.80 | 2.05 | ||||||
Priority rank | 1 | 4 | 6 | 2 | 5 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.; Roy, J.; Hembram, T.K.; Pradhan, B.; Dikshit, A.; Abdul Maulud, K.N.; Alamri, A.M. Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility Mapping. Water 2021, 13, 2664. https://doi.org/10.3390/w13192664
Saha S, Roy J, Hembram TK, Pradhan B, Dikshit A, Abdul Maulud KN, Alamri AM. Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility Mapping. Water. 2021; 13(19):2664. https://doi.org/10.3390/w13192664
Chicago/Turabian StyleSaha, Sunil, Jagabandhu Roy, Tusar Kanti Hembram, Biswajeet Pradhan, Abhirup Dikshit, Khairul Nizam Abdul Maulud, and Abdullah M. Alamri. 2021. "Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility Mapping" Water 13, no. 19: 2664. https://doi.org/10.3390/w13192664
APA StyleSaha, S., Roy, J., Hembram, T. K., Pradhan, B., Dikshit, A., Abdul Maulud, K. N., & Alamri, A. M. (2021). Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility Mapping. Water, 13(19), 2664. https://doi.org/10.3390/w13192664