Extreme Droughts Change in the Mekong River Basin: A Multidisciplinary Analysis Based on Satellite Data
Abstract
:1. Introduction
2. Data Availability and Methods
2.1. Study Area and Satellite Precipitation Data from IMERG
2.2. Standardize Precipitation Index (SPI)
2.3. Zonal Statistic Model
2.4. Drought Properties
2.5. Mann–Kendall Test
2.6. Time Series Clustering
3. Results
3.1. Retrieved Precipitation IMERG Data
3.2. Simulation Results of Historical Droughts of the MKB Using SPI
3.3. Trend of Extreme Drought Indicated by the Mann–Kendall Test
3.4. Clustering Time Series
4. Discussion
4.1. Drought and Its Overall Impacts in the Mekong River Basin
4.2. Policy Implication
4.3. Limitation and Future Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, N.A. Historic drought and salinity intrusion in the Mekong Delta in 2016: Lessons learned and response solutions. Vietnam J. Sci. Technol. Eng. 2017, 59, 93–96. [Google Scholar] [CrossRef]
- Development, M. of A. and R. The Drought and Salwater Intrusion in the Highlands, South Middle Region, and Vietnamese Mekong Delta in 2016 and Proposed Actions 2016. Available online: https://reliefweb.int/report/viet-nam/vietnam-drought-and-saltwater-intrusion-emergency-plan-action-epoa-dref-operation-n (accessed on 3 March 2021).
- Thao, N.T.T.; Khoi, D.N.; Xuan, T.T.; Tychon, B. Assessment of Livelihood Vulnerability to Drought: A Case Study in Dak Nong Province, Vietnam. Int. J. Disaster Risk Sci. 2019, 10, 604–615. [Google Scholar] [CrossRef] [Green Version]
- Ahmadalipour, A.; Moradkhani, H. Multi-dimensional assessment of drought vulnerability in Africa: 1960–2100. Sci. Total Environ. 2018, 644, 520–535. [Google Scholar] [CrossRef]
- Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, A. A Review of Drought in the Middle East and Southwest Asia. J. Clim. 2016, 29, 8547–8574. [Google Scholar] [CrossRef]
- Tre, B.; Vinh, T.; Giang, K. Vietnam. The Drought and Salinity Intrusion in the Mekong River Delta of Vietnam; CGIAR Research Centers in Southeast Asia Centers: Gelderland, The Netherlands, 2016. [Google Scholar]
- Alexander, L. V Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, I.O.; Andreoli, R.V.; Kayano, M.T.; Sousa, T.R.; Medeiros, A.S.; Godoi, R.H.M.; Godoi, A.F.L.; Junior, S.D.; Martin, S.T.; Souza, R.A.F. Biomass burning and carbon monoxide patterns in Brazil during the extreme drought years of 2005, 2010, and 2015. Environ. Pollut. 2018, 243, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Pescaroli, G.; Alexander, D. Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework. Risk Anal. 2018, 38, 2245–2257. [Google Scholar] [CrossRef] [PubMed]
- Le, P.V.V.; Phan-Van, T.; Mai, K.V.; Tran, D.Q. Space-time variability of drought over Vietnam. Int. J. Climatol. 2019, 39, 5437–5451. [Google Scholar] [CrossRef]
- Frenken, K. Irrigation in Central Asia in Figures: AQUASTAT Survey-2012. FAO Water Rep. 2013, 39, 1020–1203. [Google Scholar]
- Pokhrel, Y.; Burbano, M.; Roush, J.; Kang, H.; Sridhar, V.; Hyndman, D.W. A review of the integrated effects of changing climate, land use, and dams on Mekong river hydrology. Water 2018, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Nigam, S.; Ruiz-Barradas, A.; Chafik, L. Gulf Stream excursions and sectional detachments generate the decadal pulses in the Atlantic multidecadal oscillation. J. Clim. 2018, 31, 2853–2870. [Google Scholar] [CrossRef]
- Wang, W.; Lu, H.; Yang, D.; Sothea, K.; Jiao, Y.; Gao, B.; Peng, X.; Pang, Z. Modelling hydrologic processes in the Mekong River Basin using a distributed model driven by satellite precipitation and rain gauge observations. PLoS ONE 2016, 11, e0152229. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Huang, Y.; Chen, X.; Chen, S.; Duan, Z. Hydrologic evaluation of TRMM and GPM IMERG satellite-based precipitation in a humid basin of China. Remote Sens. 2019, 11, 431. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Li, Y.; Feng, H.; Yu, Q.; Zou, Y.; Liu, F.; Pulatov, B. Performance evaluation and correction of precipitation data using the 20-year IMERG and TMPA precipitation products in diverse subregions of China. Atmos. Res. 2020, 249, 105304. [Google Scholar] [CrossRef]
- Jiang, S.; Wei, L.; Ren, L.; Xu, C.-Y.; Zhong, F.; Wang, M.; Zhang, L.; Yuan, F.; Liu, Y. Utility of integrated IMERG precipitation and GLEAM potential evapotranspiration products for drought monitoring over mainland China. Atmos. Res. 2020, 247, 105141. [Google Scholar] [CrossRef]
- Wanders, N.; Wada, Y. Human and climate impacts on the 21st century hydrological drought. J. Hydrol. 2015, 526, 208–220. [Google Scholar] [CrossRef]
- Dai, A.; Zhao, T.; Chen, J. Climate change and drought: A precipitation and evaporation perspective. Curr. Clim. Chang. Rep. 2018, 4, 301–312. [Google Scholar] [CrossRef]
- Mekong River Commission, M. Annual Report: 2019. Available online: http://interactive.mrcmekong.org/mrc-annual-report-2019/homepage/ (accessed on 23 September 2021).
- Gan, F.; Gao, Y.; Xiao, L. Comprehensive validation of the latest IMERG V06 precipitation estimates over a basin coupled with coastal locations, tropical climate and hill-karst combined landform. Atmos. Res. 2021, 249, 105293. [Google Scholar] [CrossRef]
- Gassert, F.; Rai, P.; Reig, P.; Luck, M. Mekong river basin study. World Resour. Inst. Work. Pap. 2012. Available online: https://www.wri.org/data/mekong-river-basin-study (accessed on 23 September 2021).
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Tsakiris, G.; Vangelis, H. Towards a Drought Watch System based on Spatial SPI. Water Resour. Manag. 2004, 18, 1–12. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Fan, Y. Sample quantiles in statistical packages. Am. Stat. 1996, 50, 361–365. [Google Scholar]
- Guerrero-Salazar, P.L.A.; Yevjevich, V.M. Analysis of Drought Characteristics by the Theory of Runs. Ph.D. Thesis, Colorado State University, Libraries, Fort Collins, CO, USA, 1975. [Google Scholar]
- Wu, R.; Zhang, J.; Bao, Y.; Guo, E. Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China. Sustainability 2019, 11, 6032. [Google Scholar] [CrossRef] [Green Version]
- Montaseri, M.; Amirataee, B.; Nawaz, R. A Monte Carlo Simulation-Based Approach to Evaluate the Performance of three Meteorological Drought Indices in Northwest of Iran. Water Resour. Manag. 2017, 31, 1323–1342. [Google Scholar] [CrossRef]
- Ayantobo, O.O.; Li, Y.; Song, S. Multivariate Drought Frequency Analysis using Four-Variate Symmetric and Asymmetric Archimedean Copula Functions. Water Resour. Manag. 2019, 33, 103–127. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef] [Green Version]
- Güçlü, Y.S. Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. J. Hydrol. 2020, 584, 124674. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 1 January 1967; Volume 1, pp. 281–297. [Google Scholar]
- Thilakarathne, M.; Sridhar, V. Characterization of future drought conditions in the Lower Mekong River Basin. Weather Clim. Extrem. 2017, 17, 47–58. [Google Scholar] [CrossRef]
- Lee, S.K.; Dang, T.A. Spatio-temporal variations in meteorology drought over the Mekong River Delta of Vietnam in the recent decades. Paddy Water Environ. 2019, 17, 35–44. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Hundertmark, W. Building drought management capacity in the Mekong River basin. Irrig. Drain. 2008, 57, 279–287. [Google Scholar] [CrossRef]
- Dang, V.H.; Tran, D.D.; Cham, D.D.; Hang, P.T.; Nguyen, H.T.; Truong, H.V.; Tran, P.H.; Duong, M.B.; Nguyen, N.T.; Le, K.V.; et al. Assessment of Rainfall Distributions and Characteristics in Coastal Provinces of the Vietnamese Mekong Delta under Climate Change and ENSO Processes. Water 2020, 12, 1555. [Google Scholar] [CrossRef]
- Räsänen, T.; Kummu, M. Spatiotemporal influences of ENSO on precipitation and flood pulse in the Mekong River Basin. J. Hydrol. 2013, 476, 154–168. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Hipel, K.W.; McLeod, A.I. (Eds.) Chapter 23 Nonparametric Tests for Trend Detection. In Time Series Modelling of Water Resources and Environmental Systems; Elsevier: Amsterdam, The Netherlands, 1994; Volume 45, pp. 853–938. ISBN 0167-5648. [Google Scholar]
Sub-Name | Main-Name | Country | Area (km2) | Zonal ID |
---|---|---|---|---|
Za Qu | Mekong | China | 45,083 | 1 |
Ngom Qu | Mekong | China | 29,981 | 2 |
Qingshuilang Shah | Mekong | China | 68,623 | 3 |
Weiyuan Jiang | Mekong | China | 64,201 | 4 |
Nam Loi | Mekong | China | 17,551 | 5 |
Nam Pho/Nam Ngaou | Mekong | Laos | 12,481 | 6 |
Nam Mae Ing | Mekong | China | 52,569 | 7 |
Nam Mae Kok | Mekong | Myanmar | 16,654 | 8 |
Nam Beng/Nam Ngeun | Mekong | Laos | 26,321 | 9 |
Nam Nhiep/Nam Sane | Mekong | Laos | 12,759 | 10 |
Nam Beng/Nam Ngeun | Mekong | Laos | 52,977 | 11 |
Nam Cadinh | Mekong | Laos | 16,378 | 12 |
Songkhram | Mekong | Laos | 16,513 | 13 |
Huai Luang/Nam Phoung/Nam | Mekong | Laos | 9601 | 14 |
Nam Kam/Nam Hinboun/Huai | Mekong | Laos | 11,708 | 15 |
Nam Kam/Nam Hinboun/Huai | Mekong | Laos | 39,733 | 16 |
Nam Chi | Mekong | Thailand | 53,461 | 17 |
Se Bang Nouan | Mekong | Cambodia | 88,451 | 18 |
Se Kong | Mekong | Cambodia | 50,831 | 19 |
Upper Tonle Sap | Mekong | Cambodia | 49,903 | 20 |
Huai Tomo/Tonle Repon | Mekong | Cambodia | 45,589 | 21 |
St. Sen | Mekong | Cambodia | 29,546 | 22 |
Siem Bok | Mekong | Cambodia | 41,001 | 23 |
Lagna Da Rgna | Viet Nam, Coast | Vietnam | 9920 | 24 |
Dong Nai | Viet Nam, Coast | Cambodia | 8746 | 25 |
Lagna Da Rgna | Viet Nam, Coast | Vietnam | 42,359 | 26 |
Song Be Delta | Viet Nam, Coast | Vietnam | 1873 | 27 |
Saigon | Viet Nam, Coast | Cambodia | 74,097 | 28 |
Drought Category | Probability (%) | Values |
---|---|---|
Extreme wet | 2.30 | 2.00 ≤ SPI |
Very wet | 4.40 | 1.99 ~ 1.50 |
Moderately wet | 9.20 | 1.49 ~ 1.00 |
Near normal | 68.20 | 0.99 ~ −0.99 |
Moderate drought | 9.20 | −1.00 ~ −1.49 |
Severe drought | 4.40 | −1.50~ −1.99 |
Extreme drought | 2.30 | −2.00 ≥ SPI |
Zone | Trend | Equation | Zone | Trend | Equation |
---|---|---|---|---|---|
1 | increasing | Y = −0.0002x + 0.4395 | 15 | decreasing | Y = 0.0002x + 0.2421 |
2 | no_trend | Y = −0.0x + 0.6357 | 16 | decreasing | Y = 0.0002x + 0.2486 |
3 | increasing | Y = −0.0003x + 0.5832 | 17 | no_trend | Y = 0.0x + 0.468 |
4 | increasing | Y = −0.0002x + 0.5522 | 18 | decreasing | Y = 0.0003x + 0.4116 |
5 | decreasing | Y = 0.0002x + 0.3545 | 19 | decreasing | Y = 0.0004x + 0.4464 |
6 | increasing | Y = −0.0001x + 0.3857 | 20 | decreasing | Y = 0.0004x + 0.4423 |
7 | decreasing | Y = 0.0002x + 0.4203 | 21 | no_trend | Y = −0.0x + 0.2823 |
8 | increasing | Y = −0.0001x + 0.207 | 22 | no_trend | Y = 0.0x + 0.2624 |
9 | decreasing | Y = 0.0002x + 0.4526 | 23 | decreasing | Y = 0.0002x + 0.2638 |
10 | decreasing | Y = 0.0002x + 0.3552 | 24 | no_trend | Y = 0.0x + 0.2664 |
11 | decreasing | Y = 0.0004x + 0.46 | 25 | no_trend | Y = 0.0x + 0.2834 |
12 | decreasing | Y = 0.0002x + 0.381 | 26 | decreasing | Y = 0.0001x + 0.123 |
13 | no_trend | Y = 0.0x + 0.2479 | 27 | decreasing | Y = 0.0001x + 0.276 |
14 | decreasing | Y = 0.0001x + 0.3633 | 28 | decreasing | Y = 0.0003x + 0.1946 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuong, V.; Hoang, T.-V.; Chou, T.-Y.; Fang, Y.-M.; Wang, C.-T.; Tran, T.-D.; Tran, D.D. Extreme Droughts Change in the Mekong River Basin: A Multidisciplinary Analysis Based on Satellite Data. Water 2021, 13, 2682. https://doi.org/10.3390/w13192682
Tuong V, Hoang T-V, Chou T-Y, Fang Y-M, Wang C-T, Tran T-D, Tran DD. Extreme Droughts Change in the Mekong River Basin: A Multidisciplinary Analysis Based on Satellite Data. Water. 2021; 13(19):2682. https://doi.org/10.3390/w13192682
Chicago/Turabian StyleTuong, Vo, Thanh-Van Hoang, Tien-Yin Chou, Yao-Min Fang, Chun-Tse Wang, Thanh-Danh Tran, and Dung Duc Tran. 2021. "Extreme Droughts Change in the Mekong River Basin: A Multidisciplinary Analysis Based on Satellite Data" Water 13, no. 19: 2682. https://doi.org/10.3390/w13192682
APA StyleTuong, V., Hoang, T. -V., Chou, T. -Y., Fang, Y. -M., Wang, C. -T., Tran, T. -D., & Tran, D. D. (2021). Extreme Droughts Change in the Mekong River Basin: A Multidisciplinary Analysis Based on Satellite Data. Water, 13(19), 2682. https://doi.org/10.3390/w13192682