Vulnerability Assessment as a Basis for Sanitary Zone Delineation of Karst Groundwater Sources—Blederija Spring Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Applied Methodology
2.2. COP + K
2.3. TDM Method
2.4. Study Area and Description of the Test Site
3. Results
3.1. Application of COP + K Method
3.2. Application of TDM Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/EC)—Guidance Document No. 16—Guidance on Groundwater in Drinking Water Protected Areas; European Commission: Luxembourg, 2007. [Google Scholar]
- Van Waegeningh, H.G. Overview of the protection of groundwater quality. In Theoretical Background, Hydrogeology and Practice of Groundwater Protection Zones. International Contributions to Hydrogeology, IAH; Matthess, G., Foster, S.S.D., Skinner, A.C.H., Eds.; Heise Hanover: Hanover, Germany, 1985; pp. 159–166. [Google Scholar]
- Goldscheider, N. Delineation of spring protection zones. In Groundwater Hydrology of Springs: Engineering, Theory, Management, and Sustainability; Kresic, N., Stevanovic, Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 305–338. [Google Scholar]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Milanovic, P. Geological Engineering in KARST, Dams, Reservoirs, grouting, Groundwater Protection, Water Tapping, Tunnelling; Zebra Publishing Ltd.: Belgrade, Serbia, 2000. [Google Scholar]
- Foster, S.; Hirata, R.; Gomes, D.; D’Elia, M.; Paris, M. Groundwater Quality Protection, A Guide for Water Utilities, Municipal Authorities, and Environment Agencies; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2002. [Google Scholar]
- Chave, P.; Howard, G.; Schijven, J.; Appleyard, S.; Fladerer, F.; Schimon, W. Groundwater protection zones. In Protecting Groundwater for Health, Managing the Quality of Drinking-Water Sources; Schmoll, O., Howard, G., Chilton, J., Chorus, I., Eds.; IWA: London, UK, 2006; p. 678. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017; License: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Margat, J. Vulnerabilite des Nappes d’eau Souterrune a la Pollution (Groundwater Vulnerability to Contamination—In French). Bases De Al Cartographie Doc. 68 SGC198 HYD; BRGM: Orleans, France, 1968; p. 10. [Google Scholar]
- Vrba, J.; Zaporozec, A. (Eds.) Guidebook on Mapping Groundwater Vulnerability, International Contributions to Hydrogeology (IAH); H. Heise: Hannover, Germany, 1994; p. 131. [Google Scholar]
- Ivan, V.; Madl-Szonyi, J. State of the art of karst vulnerability assessment: Overview evaluation and outlook. Environ. Earth. Sci. 2017, 76, 112. [Google Scholar] [CrossRef]
- Daly, D.; Dassargues, A.; Drew, D.; Dunne, S.; Goldscheider, N.; Neale, S.; Popescu, I.; Zwahlen, F. Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol. J. 2002, 10, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Zwahlen, F. COST Action 620 Vulnerability and Risk Mapping for the Protection of Carbonate (Karst) Aquifers; Office for Official Publications of the European Communities: Brussels, Belgium, 2004. [Google Scholar]
- Department of the Environment and Local Government. GSI (1999) Groundwater Protection Schemes; Department of the Environment and Local Government, Environmental Protection Agency, Geological Survey of Ireland: Dublin, Ireland, 1999; ISBN 1-899702-22-9.
- Doerfliger, N.; Zwahlen, F. EPIK: A new method for outlining of protection areas in karstic environment. In Karst Waters and Environmental Impacts; Gunay, G., Johnoson, A., Eds.; Balkema: Rotterdam, The Netherlands, 1995. [Google Scholar]
- Ravbar, N. Vulnerability and Risk Mapping for the Protection of Karst Waters in Slovenia—Application to the Catchment of the Podstenjšek Springs. Ph.D. Thesis, University of Nova Gorica, Nova Gorica, Slovenia, 2007. [Google Scholar]
- Ravbar, N.; Goldscheider, N. Proposed Methodology of Vulnerability and Contamination Risk Mapping for the Protection of Karst Aquifers in Slovenia. Acta Carsol. 2007, 36. [Google Scholar] [CrossRef] [Green Version]
- Kavouri, K.; Plagnes, V.; Tremoulet, J.; Dörfliger, N.; Rejiba, F.; Marchet, P. PaPRIKa: A method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol. J. 2011, 19, 339–353. [Google Scholar] [CrossRef]
- Andreo, B.; Ravbar, N.; Vías, J.M. Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: Application to pilot sites. Hydrogeol. J. 2009, 17, 749–758. [Google Scholar] [CrossRef]
- Vías, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F.; Vadillo, I.; Jiménez, P. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeol. J. 2006, 14, 912–925. [Google Scholar] [CrossRef]
- Živanović, V.; Jemcov, I.; Dragišić, V.; Atanacković, N.; Magazinović, S. Karst groundwater source protection based on the time-dependent vulnerability assessment model: Crnica springs case study, Eastern Serbia. Environ. Earth Sci. 2016, 75, 1224. [Google Scholar] [CrossRef]
- Marín, A.I.; Andreo, B. Delineating Source Protection Zones of Karst Springs—The Case Study of Villanueva del Rosario Spring (Southern Spain). In Advances in Research in Karst Media; Andreo, B., Carrasco, F., Durán, J., LaMoreaux, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 317–322. [Google Scholar] [CrossRef]
- Ravbar, N.; Petric, M.; Blatnik, M.; Svara, A. A multi-methodological approach to create improved indicators for the adequate karst water source protection. Ecol. Indic. 2021, 126, 107693. [Google Scholar] [CrossRef]
- Marín, A.I.; Ravbar, N.; Kovačič, G.; Andreo, B.; Petrič, M. Application of Methods for Resource and Source Vulnerability Mapping in the Orehek Karst Aquifer, SW Slovenia. In H2Karst Research in Limestone Hydrogeology; Mudry, J., Zwahlen, F., Bertrand, C., LaMoreaux, J.W., Eds.; Springer: Berlin, Germany, 2014; pp. 139–150. [Google Scholar] [CrossRef]
- Plagnes, V.; Kavouri, K.; Huneau, F.; Fournier, M.; Jaunat, J.; Pinto-Ferreira, C.; Leroy, B.; Marchet, P.; Dörfliger, N. PaPRIKa, the French Multicriteria Method for Mapping the Intrinsic Vulnerability of Karst Water Resource and Source—Two Examples (Pyrenees, Normandy); Springer: Berlin/Heidelberg, Germany, 2010; pp. 323–328. [Google Scholar] [CrossRef]
- Huneau, F.; Jaunat, J.; Kavouri, K.; Plagnes, V.; Rey, F.; Dörfliger, N. Intrinsic vulnerability mapping for small mountainous karst aquifers, implementation of the new PaPRIKa method to Western Pyrenees (France). Eng. Geol. 2013, 161, 81–93. [Google Scholar] [CrossRef]
- Živanovic, V.; Jemcov, I.; Dragišić, V.; Atanacković, N. Sanitary protection zoning of groundwater sources in unconsolidated sediments based on a Time-Dependent Model. In Groundwater Vulnerability and Pollution Risk Assessment; Witkowski, A.J., Jakóbczyk-Karpierz, S., Czekaj, J., Eds.; CRC Press/Taylor and Francis Group: London, UK, 2020; pp. 39–51. [Google Scholar]
- USDA. Conservation Engineering Division (1986) Urban Hydrology for Small Watersheds, National Resources Conservation Service; The U.S. Department of Agriculture (USDA): Washington, DC, USA, 1975.
- Kralik, M.; Keimel, T. Time-input, an innovative groundwater-vulnerability assessment scheme: Application to an alpine test site. Environ. Geol. 2003, 44, 679–686. [Google Scholar] [CrossRef]
- Marsaud, B. Structure et Fonctionnment de la Zone Noyee des Karst a Partir des Resultats Expe’Rimentaux. Ph.D. Thesis, Universite Paris XI, Paris, France, 1996. [Google Scholar]
- Stevanović, Z.; Dragišić, V.; Dokmanović, P.; Mandić, M. Hydrogeology of Miroč Karst Massif, Eastern Serbia, Yugoslavia. Theor. Appl. Karstol. 1996, 9, 89–95. [Google Scholar]
- Živanović, V.; Dragišić, V.; Jemcov, I.; Atanacković, N. Hydraulic behaviour of a subthermal karst spring—Blederija spring, Eastern Serbia. In Karst without Boundaries; Stevanović, Z., Krešić, N., Kukurić, N., Eds.; CRC Press/Taylor and Francis Group: London, UK, 2016; pp. 259–268. [Google Scholar] [CrossRef]
- Bogdanović, P.; Marković, D.; Dragić, D.; Rakić, M.; Babović, M.; Rajčević, D.; Popović, V.; Milojević, L. Osnovna Geološka Karta SFRJ 1:100,000, List Donji Milanovac L34-129 (Basic Geological Map of SFRY 1:100,000, Donji Milanovac Sheet—In Serbian); Federal Geological Survey: Belgrade, Yugoslavia, 1973. [Google Scholar]
- Ćalić, J.; Miroč, K.; Greben, V. Speleološki Objekti Nacionalnog Parka Đerdap; JP Nacionalni Park Đerdap: Donji Milanovac, Serbia, 2015; pp. 61–71. (In Serbian) [Google Scholar]
- Tanasijevic, Đ.; Antonović, G.; Aleksić, Ž. Pedološka karta SFRJ 1:50,000, Listovi Dobra 4, Kladovo 3, Donji Milanovac 2, Negotin 1 (Basic Pedological Map of SFRY 1:50,000, Dobra 4, Kladovo 3, Donji Milanovac 2, Negotin 1 Sheets—in Serbian); Military Geographical Institute: Belgrade, Yugoslavia, 1973.
- CLC. Copernicus Land MONITORING Services. CORINE Map. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 16 September 2021).
- United States Geological Survey, Department of the Interior. LANDSAT-7. Available online: https://earthexplorer.usgs.gov (accessed on 16 September 2021).
- Teutsch, G.; Sauter, M. Groundwater modelling in karst terrains: Scale effects, data acquisition and field validation. In Proceedings of the Third Conference on Hydrogeology, Ecology, Monitoring, and Management of Groundwater in Karst; Quinlan, J., Ed.; US EPA: Nashville, TN, USA, 1991; pp. 17–34. [Google Scholar]
- Neukum, C.; Hötzl, H. Standardization of vulnerability maps. Environ. Geol. 2007, 51, 689–694. [Google Scholar] [CrossRef]
- Neukum, C. Overview on methods and applications for the validation of vulnerability assessments. Grundwasser 2013, 18, 15–24. [Google Scholar] [CrossRef]
- Marín, A.I.; Rodríguez, J.F.M.; Barberá, J.A.; Fernández-Ortega, J.; Mudarra, M.; Sánchez, D.; Andreo, B. Groundwater vulnerability to pollution in karst aquifers, considering key challenges and considerations: Application to the Ubrique springs in southern Spain. Hydrogeol. J. 2021, 29, 379–396. [Google Scholar] [CrossRef]
- Parise, M.; Ravbar, N.; Živanović, V.; Mikszewski, A.; Kresic, N.; Mádl-Szőnyi, J.; Kukurić, N. Hazards in Karst and Managing Water Resources Quality. In Karst Aquifers—Haracterization and Engineering, Professional Practice in Earth Sciences; Stevanovic, Z., Ed.; Springer: Berlin, Germany, 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Živanović, V.; Atanacković, N.; Stojadinović, S. Vulnerability Assessment as a Basis for Sanitary Zone Delineation of Karst Groundwater Sources—Blederija Spring Case Study. Water 2021, 13, 2775. https://doi.org/10.3390/w13192775
Živanović V, Atanacković N, Stojadinović S. Vulnerability Assessment as a Basis for Sanitary Zone Delineation of Karst Groundwater Sources—Blederija Spring Case Study. Water. 2021; 13(19):2775. https://doi.org/10.3390/w13192775
Chicago/Turabian StyleŽivanović, Vladimir, Nebojša Atanacković, and Saša Stojadinović. 2021. "Vulnerability Assessment as a Basis for Sanitary Zone Delineation of Karst Groundwater Sources—Blederija Spring Case Study" Water 13, no. 19: 2775. https://doi.org/10.3390/w13192775
APA StyleŽivanović, V., Atanacković, N., & Stojadinović, S. (2021). Vulnerability Assessment as a Basis for Sanitary Zone Delineation of Karst Groundwater Sources—Blederija Spring Case Study. Water, 13(19), 2775. https://doi.org/10.3390/w13192775