Treatment of Bilge Water by Fenton Oxidation Followed by Granular Activated Carbon Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bilge Water
2.2. Synthetic Bilge Water
2.3. Experimental Setup and Operational Conditions
2.3.1. Fenton Oxidation
2.3.2. Granular Active Carbon Adsorption
2.4. Analytical Procedures and Chemicals
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fenton Oxidation
3.2. Adsorption
3.2.1. Equilibrium Time
3.2.2. Granular Active Carbon Concentration
3.2.3. Temperature
3.2.4. pH
3.2.5. Adsorption Isotherm Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schnurr, R.E.J.; Walker, T.R. Marine transportation and energy use. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Aswathy, P.; Gandhimathi, R.; Ramesh, S.T.; Nidheesh, P.V. Removal of organics from bilge water by batch electrocoagulation process. Sep. Purif. Technol. 2016, 159, 108–115. [Google Scholar] [CrossRef]
- Artut, K. Sintine Suyunun Elektrokimyasal Yontemlerle Arastirilmasi. Master’s Thesis, Mersin University, Mersin, Turkey, June 2008. [Google Scholar]
- Ulucan, K.; Kurt, U. Comparative study of electrochemical wastewater treatment processes for bilge water as oily wastewater: A kinetic approach. J. Electroanal. Chem. 2015, 747, 104–111. [Google Scholar] [CrossRef]
- Guney, C.; Yonsel, F. Gemi inşa sektörünün çevresel sorumluluğu: Sintine ve balast suları. Gemi ve Deniz Teknolojisi 2008, 177, 10–15. [Google Scholar]
- Peng, H.; Tremblay, A.Y.; Veinot, D.E. The use of backflushed coalescing microfiltration as a pretreatment for the ultrafiltration of bilge water. Desalination 2005, 181, 109–120. [Google Scholar] [CrossRef]
- Sun, C.; Leiknes, T.; Weitzenbock, J.; Thorstensen, B. Development of a biofilm-MBR for shipboard wastewater treatment: The effect of process configuration. Desalination 2010, 250, 745–750. [Google Scholar] [CrossRef]
- Zirhli, O. Istanbul’u Cevreleyen Denizlerde Gemi Kaynakli Evsel Atiksu ve Sintine Suyu Kirliligi. Master’s Thesis, Istanbul Technical University, Istanbul, Turkey, 18 May 2004. [Google Scholar]
- MARPOL 73/78: Articles, Protocols, Annexes, Unified Interpretations of the International Convention for the Prevention of Pollution from Ships, 1973, as Modified by the Protocol of 1978 Relating. Available online: https://www.imo.org/en/About/Conventions/Pages/International-Convention-for-the-Prevention-of-Pollution-from-Ships-(MARPOL).aspx (accessed on 25 May 2020).
- Yilmaz, E.; Yetkin, M.; Yildiz, Ş. Petrol ve Petrol Türevli Gemi Kaynaklı Atıksuların Bertaraf ve Yönetimi: İstanbul Örneği; Türkiye’de Katı Atık Yönetimi Sempozumu: Istanbul, Turkey, 2009. [Google Scholar]
- Türkiye Cumhuriyeti Cumhurbaşkanlığı Mevzuat Bilgi Sistemi Su Kirliliği Kontrol Yönetmeliği (SKKY). Available online: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=7221&MevzuatTur=7&MevzuatTertip=5 (accessed on 3 April 2021).
- Karakulski, K.; Morawski, W.A.; Grzechulska, J. Purification of bilge water by hybrid ultrafiltration and photocatalytic processes. Sep. Purif. Technol. 1998, 14, 163–173. [Google Scholar] [CrossRef]
- Sun, C.; Leiknes, T.; Weitzenbock, J.; Thorstensen, B. The effect of bilge water on a Biofilm—MBR process in an integrated shipboard wastewater treatment system. Desalination 2009, 236, 56–64. [Google Scholar] [CrossRef]
- Körbahti, B.K.; Artut, K. Electrochemical oil/water demulsification and purification of bilge water using Pt/Ir electrodes. Desalination 2010, 258, 219–228. [Google Scholar] [CrossRef]
- Emadian, S.M.; Hosseini, M.; Rahimnejad, M.; Shahavi, M.H.; Khoshandam, B. Treatment of a low-strength bilge water of Caspian Sea ships by HUASB technique. Ecol. Eng. 2015, 82, 272–275. [Google Scholar] [CrossRef]
- Vyrides, I.; Drakou, E.M.; Ioannou, S.; Michael, F.; Gatidou, G.; Stasinakis, A.S. Biodegradation of bilge water: Batch test under anaerobic and aerobic conditions and performance of three pilot aerobic Moving Bed Biofilm Reactors (MBBRs) at different filling fractions. J. Environ. Manag. 2018, 217, 356–362. [Google Scholar] [CrossRef]
- Uma, V.; Gandhimathi, R. Organic removal and synthesis of biopolymer from synthetic oily bilge water using the novel mixed bacterial consortium. Bioresour. Technol. 2019, 273, 169–176. [Google Scholar] [CrossRef]
- Gulkaya, I.; Surucu, G.A.; Dilek, F.B. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. J. Hazard. Mater. 2006, 136, 763–769. [Google Scholar] [CrossRef]
- Halim, A.A.; Aziz, H.A.; Johari, M.A.M.; Ariffin, K.S. Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination 2010, 262, 31–35. [Google Scholar] [CrossRef]
- Keris, U.D. Yüksek KOİ İçeriğine Sahip İlaç Sanayi Atıksularının Arıtılabilirlik Çalışmaları. Master’s Thesis, Gebze Technical University, Kocaeli, Turkey, 28 January 2008. [Google Scholar]
- Mazioti, A.A.; Koutsokeras, L.E.; Constantinides, G.; Vyrides, I. Untapped potential of moving bed biofilm reactors with different biocarrier types for bilge water treatment: A laboratory-scale study. Water 2021, 13, 1810. [Google Scholar] [CrossRef]
- Mazioti, A.A.; Notarides, G.; Symeou, G.; Vyrides, I. Improving biological treatment of real bilge wastewater with zero valent iron and activated charcoal addition. Front. Bioeng. Biotechnol. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Öz, Ç.; Çetin, E. Organic Material Removal from Bilge Water by Chemical Treatment Processes. PAJES. in press. [CrossRef]
- Ramirez-Sosa, D.R.; Castilla-Borges, E.R.; Mendez-Novelo, R.I.; Sauri-Riancho, M.R.; Barcelo-Quintal, M.; Marrufo-Gomez, J.M. Determination of organic compound in landfill leachates treated by Fenton-Adsorption. Waste Manag. 2013, 33, 390–395. [Google Scholar] [CrossRef]
- İSTAÇ Haydarpaşa Atık Kabul Tesisi. Available online: http://3d.istac.istanbul/haydarpasa-atik-kabul-birimi (accessed on 1 June 2020).
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Aluyor, E.O.; Badmus, O.A.M. COD removal from industrial wastewater using activated carbon prepared from animal horns. Afr. J. Biotechnol. 2008, 7, 3887–3891. [Google Scholar]
- Mohammad-Pajooh, E.; Turcios, A.E.; Cuff, G.; Weichgrebe, D.; Rosenwinkel, K.H.; Vedenyapina, M.D.; Sharifullina, L.R. Removal of inert COD and trace metals from stabilized landfill leachate by granular activated carbon (GAC) adsorption. J. Environ. Manag. 2018, 228, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Nayl, A.E.A.; Elkhashab, R.A.; El Malah, T.; Yakout, S.M.; El-Khateeb, M.A.; Ali, M.M.S.; Ali, H.M. Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste. Environ. Sci. Pollut. Res. Int. 2017, 24, 22284–22293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, F.; Xing, J.; Lv, F.; Meng, X.; Chu, P.K. Adsorption Behaviour and Removal of Organic Materials from TNT Red Water by Lignite Activated Carbon. J. Residuals Sci. Technol. 2012, 9, 121–129. [Google Scholar]
- Namasivayam, C.; Yamuna, R.T. Adsorption of Chromium (VI) by a Low-Cost Adsorbent: Biogas Residual Slurry. Chemosphere 1995, 30, 561–578. [Google Scholar] [CrossRef]
- Larous, S.; Meniai, A.H.; Lehocine, M.B. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination 2005, 185, 483–490. [Google Scholar] [CrossRef]
- Mohan, S.V.; Karthikeyan, J. Removal of Lignin and Tannin Colour From Aqueous Solution by Adsorption Onto Activated Charcoal. Environ. Pollut. 1997, 97, 183–187. [Google Scholar] [CrossRef]
- Ghodale, M.D.; Kankal, S.D. Investigation of Optimum Operating Parameters for BOD&COD Removal using Activated Carbon. IJRDET 2014, 2, 38–43. [Google Scholar]
- Sadhasivam, S.; Savitha, S.; Swaminathan, K. Exploitation of Trichoderma harzianum mycelial waste for the removal of rhodamine 6G from aqueous solution. J. Environ. Manag. 2007, 85, 155–161. [Google Scholar] [CrossRef] [PubMed]
Parameter | Concentration (mg L−1) |
---|---|
Chemical Oxygen Demand (COD) | 1100 |
Soluble Chemical Oxygen Demand (sCOD) | 900 |
Oil/Grease | 900 |
Chloride (Cl−) | 5700 |
Suspended Solids (SS) | 100 |
Volatile Suspended Solids (VSS) | 90 |
Contents | Concentration (mg L−1) |
---|---|
Diesel fuel | 1000 |
Lubricating oil | 800 |
Hydraulic oil | 200 |
Detergents and surfactants | 500 |
NaCl | 11,000 |
Na2SO4 | 2000 |
KCl | 400 |
CaCl2 | 600 |
Experiment Number | Equilibrium Time (h) | Adsorbent Dosage (g GAC L−1) | Temperature (°C) | pH |
---|---|---|---|---|
1 | 1 | 1 | 25 | 7.5 |
2 | 3 | |||
3 | 5 | |||
4 | 7 | |||
5 | 24 | |||
6 | 48 | |||
7 | 72 | |||
8 | 24 | 1 | 25 | 7.5 |
9 | 1.5 | |||
10 | 2 | |||
11 | 2.5 | |||
12 | 3 | |||
13 | 24 | 1 | 15 | 7.5 |
14 | 1.5 | |||
15 | 2 | |||
16 | 2.5 | |||
17 | 3 | |||
18 | 24 | 1 | 20 | 7.5 |
19 | 1.5 | |||
20 | 2 | |||
21 | 2.5 | |||
22 | 3 | |||
23 | 24 | 1 | 30 | 7.5 |
24 | 1.5 | |||
25 | 2 | |||
26 | 2.5 | |||
27 | 3 | |||
28 | 24 | 2 | 20 | 2 |
29 | 4 | |||
30 | 6 | |||
31 | 8 | |||
32 | 10 |
Ratio of Bilge Water (%) | Ratio of Synthetic Bilge Water (%) |
---|---|
100 | 0 |
90 | 10 |
80 | 20 |
70 | 30 |
60 | 40 |
50 | 50 |
Freundlich Isotherm Constants | Langmuir Isotherm Constants | ||||
---|---|---|---|---|---|
Kf (mg g−1) | n | R2 | Q0 (mg g−1) | KL (L mg−1) | R2 |
17.68 | 2.27 | 0.78 | 523.26 | 0.0026 | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öz, Ç.; Çetin, E. Treatment of Bilge Water by Fenton Oxidation Followed by Granular Activated Carbon Adsorption. Water 2021, 13, 2792. https://doi.org/10.3390/w13192792
Öz Ç, Çetin E. Treatment of Bilge Water by Fenton Oxidation Followed by Granular Activated Carbon Adsorption. Water. 2021; 13(19):2792. https://doi.org/10.3390/w13192792
Chicago/Turabian StyleÖz, Çiğdem, and Ender Çetin. 2021. "Treatment of Bilge Water by Fenton Oxidation Followed by Granular Activated Carbon Adsorption" Water 13, no. 19: 2792. https://doi.org/10.3390/w13192792
APA StyleÖz, Ç., & Çetin, E. (2021). Treatment of Bilge Water by Fenton Oxidation Followed by Granular Activated Carbon Adsorption. Water, 13(19), 2792. https://doi.org/10.3390/w13192792