Relationship between Earthquake-Induced Hydrologic Changes and Faults
Abstract
:1. Introduction
2. Geological Setting and Observations
3. Earthquake-Induced Water Level Changes
4. Method
4.1. Analysis of Tidal Behavior
4.2. Estimation of the Hydraulic Properties
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooper, H.H.; Bredehoeft, J.D.; Papadopulos, I.S.; Bennett, R.R. The response of well-aquifer systems to seismic waves. J. Geophys. Res. Space Phys. 1965, 70, 3915–3926. [Google Scholar] [CrossRef]
- Liu, L.-B.; Roeloffs, E.; Zheng, X.-Y. Seismically induced water level fluctuations in the Wali Well, Beijing, China. J. Geophys. Res. Space Phys. 1989, 94, 9453–9462. [Google Scholar] [CrossRef]
- Roeloffs, E.A. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res. Space Phys. 1998, 103, 869–889. [Google Scholar] [CrossRef]
- Wang, C.Y.; Cheng, L.H.; Chin, C.V.; Yu, S.B. Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan. Geology 2001, 29, 831–834. [Google Scholar] [CrossRef]
- Brodsky, E.E.; Roeloffs, E.; Woodcock, D.; Gall, I.; Manga, M. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res. Space Phys. 2003, 108, 2390. [Google Scholar] [CrossRef] [Green Version]
- ElKhoury, J.E.; Brodsky, E.E.; Agnew, D.C. Seismic waves increase permeability. Nature 2006, 441, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Wakita, H. Water Wells as Possible Indicators of Tectonic Strain. Science. 1975, 189, 553–555. [Google Scholar] [CrossRef] [PubMed]
- Muir-Wood, R.; King, G.C.P. Hydrological signatures of earthquake strain. J. Geophys. Res. Space Phys. 1993, 98, 22035–22068. [Google Scholar] [CrossRef]
- Quilty, E.G.; Roeloffs, E.A. Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California. Bull. Seism. Soc. Am. 1997, 87, 310–317. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, F.Q. Mechanism of different coseismic water-level changes in wells with similar epicentral distances of intermediate field. Bull. Seismol. Soc. Am. 2011, 101, 1531–1541. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, G.; Liu, C. Co-Seismic Groundwater Level Changes Induced by the May 12, 2008 Wenchuan Earthquake in the Near Field. Pure Appl. Geophys. Pageoph. 2013, 170, 1773–1783. [Google Scholar] [CrossRef]
- Lai, G.; Jiang, C.; Han, L.; Sheng, S.; Ma, Y. Co-seismic water level changes in response to multiple large earthquakes at the LGH well in Sichuan, China. Tectonophysics 2016, 679, 211–217. [Google Scholar] [CrossRef]
- Yang, Z.-Z.; Deng, Z.-H.; Zhao, Y.-X.; Zhu, P.-Y. Preliminary study on coseismic step-like changes of water-level in the Dazhai well, Simao city, Yunnan Province. Acta Seism. Sin. 2005, 18, 611–617. [Google Scholar] [CrossRef]
- Wang, C.; Manga, M. Hydrologic responses to earthquakes and a general metric. Geofluids 2010, 10, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Cox, S.; Rutter, H.; Sims, A.; Manga, M.; Weir, J.; Ezzy, T.; White, P.; Horton, T.; Scott, D. Hydrological effects of the M W 7.1 Darfield (Canterbury) earthquake, 4 September 2010, New Zealand. N. Z. J. Geol. Geophys. 2012, 55, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Woith, H.; Wang, R. Groundwater level changes induced by the 2011 Tohoku earthquake in China mainland. Geophys. J. Int. 2014, 199, 533–548. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Huang, F. Coseismic water level changes induced by two distant earthquakes in multiple wells of the Chinese mainland. Tectonophysics 2017, 694, 57–68. [Google Scholar] [CrossRef]
- Luca, G.D.; Carlo, G.D.; Tallini, M. A record of changes in the Gran Sasso groundwater before, during and after the 2016 Amatrice earthquake, central Italy. Sci. Rep. 2018, 8, 15982. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.M.; Zhang, S.C.; Yan, R.; Wang, G.C. Fault zone permeability decrease following large earthquakes in a hy-drothermal system. Geophys. Res. Lett. 2018, 453, 1387–1394. [Google Scholar] [CrossRef]
- He, A.; Singh, R.P. Groundwater level response to the Wenchuan earthquake of May 2008. Geomat. Nat. Hazards Risk 2018, 10, 336–352. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.-Q.; Jian, C.-L.; Tang, Y.; Xu, G.-M.; Deng, Z.-H.; Chi, G.-C. Response changes of some wells in the mainland subsurface fluid monitoring network of China, due to the September 21, 1999, Ms7.6 Chi-Chi Earthquake. Tectonophysics 2004, 390, 217–234. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, G.; Manga, M.; Wang, C.-Y. Continental-scale water-level response to a large earthquake. Geofluids 2014, 15, 310–320. [Google Scholar] [CrossRef]
- Yan, R.; Wang, G.; Shi, Z. Sensitivity of hydraulic properties to dynamic strain within a fault damage zone. J. Hydrol. 2016, 543, 721–728. [Google Scholar] [CrossRef]
- Xue, L.; Brodsky, E.E.; Erskine, J.; Fulton, P.M.; Carter, R. A permeability and compliance contrast measured hydrogeologically on the San Andreas Fault. Geochem. Geophys. Geosystems 2016, 17, 858–871. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, E.E.; van der Elst, N.J. The uses of dynamic earthquake triggering. Annu. Rev. Earth Planet. Sci. 2014, 42, 317–339. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, D.; Liu, Y.; Che, Y.; Qin, D. Impact of impoundment on groundwater seepage in the Three Gorges Dam in China based on CFCs and stable isotopes. Environ. Earth Sci. 2014, 72, 4491–4500. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, D.; Zhu, D. Denudation rates of crystalline rock in the Huangling anticline of the Three Gorges of the Yangtze River in China since the Eocene. Sci. China Ser. D Earth Sci. 2003, 46, 928–940. [Google Scholar] [CrossRef]
- Che, Y.T.; Chen, J.H.; Zhang, L.F.; Yu, J.Z.; Liu, C.L.; Zhang, W.H. Study of the reservoir-induced Hujiaping MS 4.1 earthquake in the Three Gorges Dam area. Earthquake 2009, 29, 1–13. (In Chinese) [Google Scholar]
- Che, Y.T. Three Gorges Groundwater Monitoring Well Network; Institute of Geology, China Earthquake Administration: Harbin, China, 2001; pp. 1–156. (In Chinese) [Google Scholar]
- Liu, C.L. Research on Precursory Anomalies and Co-Seismic Response of Groundwater Associated with Wenchuan Earthquake. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2012; pp. 27–33. [Google Scholar]
- Rojstaczer, S.; Wolf, S.; Michel, R. Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nat. Cell Biol. 1995, 373, 237–239. [Google Scholar] [CrossRef]
- Venedikov, A.P.; Arnoso, J.; Vieira, R. VAV: A program for tidal data processing. Comput. Geosci. 2003, 29, 487–502. [Google Scholar] [CrossRef]
- Hsieh, P.A.; Bredehoeft, J.D.; Farr, J.M. Determination of aquifer transmissivity from Earth tide analysis. Water Resour. Res. 1987, 23, 1824–1832. [Google Scholar] [CrossRef]
- Wang, H.F. Theory of Linear; Princeton University Press: Princeton, NJ, USA, 2000. [Google Scholar]
- Xue, L.; Li, H.-B.; Brodsky, E.E.; Xu, Z.-Q.; Kano, Y.; Wang, H.; Mori, J.J.; Si, J.-L.; Pei, J.-L.; Zhang, W.; et al. Continuous Permeability Measurements Record Healing Inside the Wenchuan Earthquake Fault Zone. Science 2013, 340, 1555–1559. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wang, G.; Liu, C.; Mei, J.; Wang, J.; Fang, H. Coseismic response of groundwater level in the Three Gorges well network and its relationship to aquifer parameters. Chin. Sci. Bull. 2013, 58, 3080–3087. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Shi, Z.; Wang, G. Comparison of aquifer parameters inferred from water level changes induced by slug test, earth tide and earthquake—A case study in the three Gorges area. J. Hydrol. 2019, 579, 124169. [Google Scholar] [CrossRef]
- Manga, M.; Brodsky, E. Seismic Triggering of Eruptions in The Far Field: Volcanoes and Geysers. Annu. Rev. Earth Planet. Sci. 2006, 34, 263–291. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 1992, 82, 1018–1040. [Google Scholar] [CrossRef]
- Matsumoto, N.; Roeloffs, E.A. Hydrological response to earthquakes in the Haibara well, central Japan—II. Possible mechanism inferred from time-varying hydraulic properties. Geophys. J. Int. 2003, 155, 899–913. [Google Scholar] [CrossRef] [Green Version]
- Manga, M.; Beresnev, I.; Brodsky, E.E.; Elkhoury, J.E.; Elsworth, D.; Ingebritsen, S.E.; Wang, C.Y. Changes in per-meability caused by transient stresses: Field observations, experiments, and mechanisms. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.W.; Sun, X.L.; Ma, Y.C.; Zhang, L.; Ren, H.W.; Fang, Z. Hydrogeological and geochemical obser-vations for earthquake prediction research in China: A brief overview. Pure Appl. Geophys. 2018, 175, 2541–2555. [Google Scholar] [CrossRef]
Well Name | Depth (m) | Casing Length (m) | Screened Section (m) | Discharge Section (m) | Aquifer Lithology | Relationship with Fault |
---|---|---|---|---|---|---|
DJP | 153.1 | 0–80 | 80–153.1 | 86, 103–106, 116 | Biotite-quartz diorite | PenetrateGJC fault |
MP | 200.5 | 0–80 | 80–200.5 | 85, 130 | Biotite-quartz diorite | Penetrate CMT fault |
HJW | 100.5 | 0–60 | 60–100.5 | 69.4, 70–72 | Quartz diorite | Near TPX fault |
GJX | 150 | 0–50 | 50–150 | 69.3, 75 | Biotite-quartz diorite | Near GJC fault |
Well Name | Anion (mg/L) | Cation (mg/L) | Salinity (ng/L) | Isotope (‰) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HCO3− | SO42− | Cl− | K+ | Na+ | Ca2+ | Mg2+ | δD | δ18O | ||
DJP | 90.8 | 32.6 | 22.8 | 3.77 | 15.2 | 26.57 | 4.63 | 0.1573 | −36.9 | −5.84 |
MP | 140 | 4.15 | 17.5 | 2.89 | 17.9 | 24.5 | 2.63 | 0.7965 | −59.6 | −8.3 |
HJW | 192 | 12.4 | 17.9 | 4.78 | 11.12 | 43.32 | 9.45 | 0.2114 | −51.2 | −6.77 |
GJX | 60.3 | 21.3 | 12. | 1.68 | 10.1 | 17.13 | 4.81 | 0.1202 | −47.2 | −7.0 |
Well Name | WL (m) | ΔWL (m) | Phase (°) | ΔPhase (°) | TF (mm/) 10−9 | ΔTF (mm/) 10−9) | K (m2) | S | ||
---|---|---|---|---|---|---|---|---|---|---|
DJP | 3.38 | −3.06 | −32.53 | 10.88 | 0.63 | 0.59 | 3.3 × 10−15 | 0.67 | 8.9 × 10−5 | −0.45 |
MP | 1.13 | −1.13 | −59 | 3.42 | 0.91 | 0.17 | 6.2 × 10−16 | 0.24 | 5.0 × 10−5 | −0.05 |
HJW | 1.24 | −0.067 | −55.00 | 0.06 | ||||||
GJX | 1.17 | −1.16 | 51.29 | 0.57 | 2.6 × 10−13 | 1.8 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wang, G.; Yan, R.; Wang, B.; Yu, H.; Yu, C.; Yue, C.; Wang, Y. Relationship between Earthquake-Induced Hydrologic Changes and Faults. Water 2021, 13, 2795. https://doi.org/10.3390/w13192795
Ma Y, Wang G, Yan R, Wang B, Yu H, Yu C, Yue C, Wang Y. Relationship between Earthquake-Induced Hydrologic Changes and Faults. Water. 2021; 13(19):2795. https://doi.org/10.3390/w13192795
Chicago/Turabian StyleMa, Yuchuan, Guangcai Wang, Rui Yan, Bo Wang, Huaizhong Yu, Chen Yu, Chong Yue, and Yali Wang. 2021. "Relationship between Earthquake-Induced Hydrologic Changes and Faults" Water 13, no. 19: 2795. https://doi.org/10.3390/w13192795
APA StyleMa, Y., Wang, G., Yan, R., Wang, B., Yu, H., Yu, C., Yue, C., & Wang, Y. (2021). Relationship between Earthquake-Induced Hydrologic Changes and Faults. Water, 13(19), 2795. https://doi.org/10.3390/w13192795